Final edits for SIGCOMM tutorial (#191)

* Final updates for SIGCOMM '18

* Final updates for SIGCOMM '18
This commit is contained in:
Nate Foster
2018-08-19 23:20:39 -04:00
committed by Robert Soule
parent 6ccdbc34bd
commit 763b95a880
21 changed files with 4 additions and 15 deletions

View File

@@ -0,0 +1,5 @@
BMV2_SWITCH_EXE = simple_switch_grpc
NO_P4 = true
P4C_ARGS = --p4runtime-file $(basename $@).p4info --p4runtime-format text
include ../../utils/Makefile

After

Width:  |  Height:  |  Size: 154 B

View File

@@ -0,0 +1,107 @@
# Implementing a P4 Calculator
## Introduction
The objective of this tutorial is to implement a basic calculator
using a custom protocol header written in P4. The header will contain
an operation to perform and two operands. When a switch receives a
calculator packet header, it will execute the operation on the
operands, and return the result to the sender.
## Step 1: Run the (incomplete) starter code
The directory with this README also contains a skeleton P4 program,
`calc.p4`, which initially drops all packets. Your job will be to
extend it to properly implement the calculator logic.
As a first step, compile the incomplete `calc.p4` and bring up a
switch in Mininet to test its behavior.
1. In your shell, run:
```bash
make
```
This will:
* compile `calc.p4`, and
* start a Mininet instance with one switches (`s1`) connected to
two hosts (`h1`, `h2`).
* The hosts are assigned IPs of `10.0.1.1` and `10.0.1.2`.
2. We've written a small Python-based driver program that will allow
you to test your calculator. You can run the driver program directly
from the Mininet command prompt:
```
mininet> h1 python calc.py
>
```
3. The driver program will provide a new prompt, at which you can type
basic expressions. The test harness will parse your expression, and
prepare a packet with the corresponding operator and operands. It will
then send a packet to the switch for evaluation. When the switch
returns the result of the computation, the test program will print the
result. However, because the calculator program is not implemented,
you should see an error message.
```
> 1+1
Didn't receive response
>
```
## Step 2: Implement Calculator
To implement the calculator, you will need to define a custom
calculator header, and implement the switch logic to parse header,
perform the requested operation, write the result in the header, and
return the packet to the sender.
We will use the following header format:
0 1 2 3
+----------------+----------------+----------------+---------------+
| P | 4 | Version | Op |
+----------------+----------------+----------------+---------------+
| Operand A |
+----------------+----------------+----------------+---------------+
| Operand B |
+----------------+----------------+----------------+---------------+
| Result |
+----------------+----------------+----------------+---------------+
- P is an ASCII Letter 'P' (0x50)
- 4 is an ASCII Letter '4' (0x34)
- Version is currently 0.1 (0x01)
- Op is an operation to Perform:
- '+' (0x2b) Result = OperandA + OperandB
- '-' (0x2d) Result = OperandA - OperandB
- '&' (0x26) Result = OperandA & OperandB
- '|' (0x7c) Result = OperandA | OperandB
- '^' (0x5e) Result = OperandA ^ OperandB
We will assume that the calculator header is carried over Ethernet,
and we will use the Ethernet type 0x1234 to indicate the presence of
the header.
Given what you have learned so far, your task is to implement the P4
calculator program. There is no control plane logic, so you need only
worry about the data plane implementation.
A working calculator implementation will parse the custom headers,
execute the mathematical operation, write the result in the result
field, and return the packet to the sender.
## Step 3: Run your solution
Follow the instructions from Step 1. This time, you should see the
correct result:
```
> 1+1
2
>
```

View File

@@ -0,0 +1,250 @@
/* -*- P4_16 -*- */
/*
* P4 Calculator
*
* This program implements a simple protocol. It can be carried over Ethernet
* (Ethertype 0x1234).
*
* The Protocol header looks like this:
*
* 0 1 2 3
* +----------------+----------------+----------------+---------------+
* | P | 4 | Version | Op |
* +----------------+----------------+----------------+---------------+
* | Operand A |
* +----------------+----------------+----------------+---------------+
* | Operand B |
* +----------------+----------------+----------------+---------------+
* | Result |
* +----------------+----------------+----------------+---------------+
*
* P is an ASCII Letter 'P' (0x50)
* 4 is an ASCII Letter '4' (0x34)
* Version is currently 0.1 (0x01)
* Op is an operation to Perform:
* '+' (0x2b) Result = OperandA + OperandB
* '-' (0x2d) Result = OperandA - OperandB
* '&' (0x26) Result = OperandA & OperandB
* '|' (0x7c) Result = OperandA | OperandB
* '^' (0x5e) Result = OperandA ^ OperandB
*
* The device receives a packet, performs the requested operation, fills in the
* result and sends the packet back out of the same port it came in on, while
* swapping the source and destination addresses.
*
* If an unknown operation is specified or the header is not valid, the packet
* is dropped
*/
#include <core.p4>
#include <v1model.p4>
/*
* Define the headers the program will recognize
*/
/*
* Standard Ethernet header
*/
header ethernet_t {
bit<48> dstAddr;
bit<48> srcAddr;
bit<16> etherType;
}
/*
* This is a custom protocol header for the calculator. We'll use
* etherType 0x1234 for it (see parser)
*/
const bit<16> P4CALC_ETYPE = 0x1234;
const bit<8> P4CALC_P = 0x50; // 'P'
const bit<8> P4CALC_4 = 0x34; // '4'
const bit<8> P4CALC_VER = 0x01; // v0.1
const bit<8> P4CALC_PLUS = 0x2b; // '+'
const bit<8> P4CALC_MINUS = 0x2d; // '-'
const bit<8> P4CALC_AND = 0x26; // '&'
const bit<8> P4CALC_OR = 0x7c; // '|'
const bit<8> P4CALC_CARET = 0x5e; // '^'
header p4calc_t {
bit<8> op;
/* TODO
* fill p4calc_t header with P, four, ver, op, operand_a, operand_b, and res
entries based on above protocol header definition.
*/
}
/*
* All headers, used in the program needs to be assembled into a single struct.
* We only need to declare the type, but there is no need to instantiate it,
* because it is done "by the architecture", i.e. outside of P4 functions
*/
struct headers {
ethernet_t ethernet;
p4calc_t p4calc;
}
/*
* All metadata, globally used in the program, also needs to be assembled
* into a single struct. As in the case of the headers, we only need to
* declare the type, but there is no need to instantiate it,
* because it is done "by the architecture", i.e. outside of P4 functions
*/
struct metadata {
/* In our case it is empty */
}
/*************************************************************************
*********************** P A R S E R ***********************************
*************************************************************************/
parser MyParser(packet_in packet,
out headers hdr,
inout metadata meta,
inout standard_metadata_t standard_metadata) {
state start {
packet.extract(hdr.ethernet);
transition select(hdr.ethernet.etherType) {
P4CALC_ETYPE : check_p4calc;
default : accept;
}
}
state check_p4calc {
/* TODO: just uncomment the following parse block */
/*
transition select(packet.lookahead<p4calc_t>().p,
packet.lookahead<p4calc_t>().four,
packet.lookahead<p4calc_t>().ver) {
(P4CALC_P, P4CALC_4, P4CALC_VER) : parse_p4calc;
default : accept;
}
*/
}
state parse_p4calc {
packet.extract(hdr.p4calc);
transition accept;
}
}
/*************************************************************************
************ C H E C K S U M V E R I F I C A T I O N *************
*************************************************************************/
control MyVerifyChecksum(inout headers hdr,
inout metadata meta) {
apply { }
}
/*************************************************************************
************** I N G R E S S P R O C E S S I N G *******************
*************************************************************************/
control MyIngress(inout headers hdr,
inout metadata meta,
inout standard_metadata_t standard_metadata) {
action send_back(bit<32> result) {
/* TODO
* - put the result back in hdr.p4calc.res
* - swap MAC addresses in hdr.ethernet.dstAddr and
* hdr.ethernet.srcAddr using a temp variable
* - Send the packet back to the port it came from
by saving standard_metadata.ingress_port into
standard_metadata.egress_spec
*/
}
action operation_add() {
/* TODO call send_back with operand_a + operand_b */
}
action operation_sub() {
/* TODO call send_back with operand_a - operand_b */
}
action operation_and() {
/* TODO call send_back with operand_a & operand_b */
}
action operation_or() {
/* TODO call send_back with operand_a | operand_b */
}
action operation_xor() {
/* TODO call send_back with operand_a ^ operand_b */
}
action operation_drop() {
mark_to_drop();
}
table calculate {
key = {
hdr.p4calc.op : exact;
}
actions = {
operation_add;
operation_sub;
operation_and;
operation_or;
operation_xor;
operation_drop;
}
const default_action = operation_drop();
const entries = {
P4CALC_PLUS : operation_add();
P4CALC_MINUS: operation_sub();
P4CALC_AND : operation_and();
P4CALC_OR : operation_or();
P4CALC_CARET: operation_xor();
}
}
apply {
if (hdr.p4calc.isValid()) {
calculate.apply();
} else {
operation_drop();
}
}
}
/*************************************************************************
**************** E G R E S S P R O C E S S I N G *******************
*************************************************************************/
control MyEgress(inout headers hdr,
inout metadata meta,
inout standard_metadata_t standard_metadata) {
apply { }
}
/*************************************************************************
************* C H E C K S U M C O M P U T A T I O N **************
*************************************************************************/
control MyComputeChecksum(inout headers hdr, inout metadata meta) {
apply { }
}
/*************************************************************************
*********************** D E P A R S E R *******************************
*************************************************************************/
control MyDeparser(packet_out packet, in headers hdr) {
apply {
packet.emit(hdr.ethernet);
packet.emit(hdr.p4calc);
}
}
/*************************************************************************
*********************** S W I T T C H **********************************
*************************************************************************/
V1Switch(
MyParser(),
MyVerifyChecksum(),
MyIngress(),
MyEgress(),
MyComputeChecksum(),
MyDeparser()
) main;

97
exercises/other/calc/calc.py Executable file
View File

@@ -0,0 +1,97 @@
#!/usr/bin/env python
import argparse
import sys
import socket
import random
import struct
import re
from scapy.all import sendp, send, srp1
from scapy.all import Packet, hexdump
from scapy.all import Ether, StrFixedLenField, XByteField, IntField
from scapy.all import bind_layers
import readline
class P4calc(Packet):
name = "P4calc"
fields_desc = [ StrFixedLenField("P", "P", length=1),
StrFixedLenField("Four", "4", length=1),
XByteField("version", 0x01),
StrFixedLenField("op", "+", length=1),
IntField("operand_a", 0),
IntField("operand_b", 0),
IntField("result", 0xDEADBABE)]
bind_layers(Ether, P4calc, type=0x1234)
class NumParseError(Exception):
pass
class OpParseError(Exception):
pass
class Token:
def __init__(self,type,value = None):
self.type = type
self.value = value
def num_parser(s, i, ts):
pattern = "^\s*([0-9]+)\s*"
match = re.match(pattern,s[i:])
if match:
ts.append(Token('num', match.group(1)))
return i + match.end(), ts
raise NumParseError('Expected number literal.')
def op_parser(s, i, ts):
pattern = "^\s*([-+&|^])\s*"
match = re.match(pattern,s[i:])
if match:
ts.append(Token('num', match.group(1)))
return i + match.end(), ts
raise NumParseError("Expected binary operator '-', '+', '&', '|', or '^'.")
def make_seq(p1, p2):
def parse(s, i, ts):
i,ts2 = p1(s,i,ts)
return p2(s,i,ts2)
return parse
def main():
p = make_seq(num_parser, make_seq(op_parser,num_parser))
s = ''
iface = 'h1-eth0'
while True:
s = str(raw_input('> '))
if s == "quit":
break
print s
try:
i,ts = p(s,0,[])
pkt = Ether(dst='00:04:00:00:00:00', type=0x1234) / P4calc(op=ts[1].value,
operand_a=int(ts[0].value),
operand_b=int(ts[2].value))
pkt = pkt/' '
# pkt.show()
resp = srp1(pkt, iface=iface, timeout=1, verbose=False)
if resp:
p4calc=resp[P4calc]
if p4calc:
print p4calc.result
else:
print "cannot find P4calc header in the packet"
else:
print "Didn't receive response"
except Exception as error:
print error
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,6 @@
{
"target": "bmv2",
"p4info": "build/calc.p4info",
"bmv2_json": "build/calc.json",
"table_entries": [ ]
}

View File

@@ -0,0 +1,256 @@
/* -*- P4_16 -*- */
/*
* P4 Calculator
*
* This program implements a simple protocol. It can be carried over Ethernet
* (Ethertype 0x1234).
*
* The Protocol header looks like this:
*
* 0 1 2 3
* +----------------+----------------+----------------+---------------+
* | P | 4 | Version | Op |
* +----------------+----------------+----------------+---------------+
* | Operand A |
* +----------------+----------------+----------------+---------------+
* | Operand B |
* +----------------+----------------+----------------+---------------+
* | Result |
* +----------------+----------------+----------------+---------------+
*
* P is an ASCII Letter 'P' (0x50)
* 4 is an ASCII Letter '4' (0x34)
* Version is currently 0.1 (0x01)
* Op is an operation to Perform:
* '+' (0x2b) Result = OperandA + OperandB
* '-' (0x2d) Result = OperandA - OperandB
* '&' (0x26) Result = OperandA & OperandB
* '|' (0x7c) Result = OperandA | OperandB
* '^' (0x5e) Result = OperandA ^ OperandB
*
* The device receives a packet, performs the requested operation, fills in the
* result and sends the packet back out of the same port it came in on, while
* swapping the source and destination addresses.
*
* If an unknown operation is specified or the header is not valid, the packet
* is dropped
*/
#include <core.p4>
#include <v1model.p4>
/*
* Define the headers the program will recognize
*/
/*
* Standard ethernet header
*/
header ethernet_t {
bit<48> dstAddr;
bit<48> srcAddr;
bit<16> etherType;
}
/*
* This is a custom protocol header for the calculator. We'll use
* ethertype 0x1234 for is (see parser)
*/
const bit<16> P4CALC_ETYPE = 0x1234;
const bit<8> P4CALC_P = 0x50; // 'P'
const bit<8> P4CALC_4 = 0x34; // '4'
const bit<8> P4CALC_VER = 0x01; // v0.1
const bit<8> P4CALC_PLUS = 0x2b; // '+'
const bit<8> P4CALC_MINUS = 0x2d; // '-'
const bit<8> P4CALC_AND = 0x26; // '&'
const bit<8> P4CALC_OR = 0x7c; // '|'
const bit<8> P4CALC_CARET = 0x5e; // '^'
header p4calc_t {
bit<8> p;
bit<8> four;
bit<8> ver;
bit<8> op;
bit<32> operand_a;
bit<32> operand_b;
bit<32> res;
}
/*
* All headers, used in the program needs to be assembed into a single struct.
* We only need to declare the type, but there is no need to instantiate it,
* because it is done "by the architecture", i.e. outside of P4 functions
*/
struct headers {
ethernet_t ethernet;
p4calc_t p4calc;
}
/*
* All metadata, globally used in the program, also needs to be assembed
* into a single struct. As in the case of the headers, we only need to
* declare the type, but there is no need to instantiate it,
* because it is done "by the architecture", i.e. outside of P4 functions
*/
struct metadata {
/* In our case it is empty */
}
/*************************************************************************
*********************** P A R S E R ***********************************
*************************************************************************/
parser MyParser(packet_in packet,
out headers hdr,
inout metadata meta,
inout standard_metadata_t standard_metadata) {
state start {
packet.extract(hdr.ethernet);
transition select(hdr.ethernet.etherType) {
P4CALC_ETYPE : check_p4calc;
default : accept;
}
}
state check_p4calc {
transition select(packet.lookahead<p4calc_t>().p,
packet.lookahead<p4calc_t>().four,
packet.lookahead<p4calc_t>().ver) {
(P4CALC_P, P4CALC_4, P4CALC_VER) : parse_p4calc;
default : accept;
}
}
state parse_p4calc {
packet.extract(hdr.p4calc);
transition accept;
}
}
/*************************************************************************
************ C H E C K S U M V E R I F I C A T I O N *************
*************************************************************************/
control MyVerifyChecksum(inout headers hdr,
inout metadata meta) {
apply { }
}
/*************************************************************************
************** I N G R E S S P R O C E S S I N G *******************
*************************************************************************/
control MyIngress(inout headers hdr,
inout metadata meta,
inout standard_metadata_t standard_metadata) {
action send_back(bit<32> result) {
bit<48> tmp;
/* Put the result back in */
hdr.p4calc.res = result;
/* Swap the MAC addresses */
tmp = hdr.ethernet.dstAddr;
hdr.ethernet.dstAddr = hdr.ethernet.srcAddr;
hdr.ethernet.srcAddr = tmp;
/* Send the packet back to the port it came from */
standard_metadata.egress_spec = standard_metadata.ingress_port;
}
action operation_add() {
send_back(hdr.p4calc.operand_a + hdr.p4calc.operand_b);
}
action operation_sub() {
send_back(hdr.p4calc.operand_a - hdr.p4calc.operand_b);
}
action operation_and() {
send_back(hdr.p4calc.operand_a & hdr.p4calc.operand_b);
}
action operation_or() {
send_back(hdr.p4calc.operand_a | hdr.p4calc.operand_b);
}
action operation_xor() {
send_back(hdr.p4calc.operand_a ^ hdr.p4calc.operand_b);
}
action operation_drop() {
mark_to_drop();
}
table calculate {
key = {
hdr.p4calc.op : exact;
}
actions = {
operation_add;
operation_sub;
operation_and;
operation_or;
operation_xor;
operation_drop;
}
const default_action = operation_drop();
const entries = {
P4CALC_PLUS : operation_add();
P4CALC_MINUS: operation_sub();
P4CALC_AND : operation_and();
P4CALC_OR : operation_or();
P4CALC_CARET: operation_xor();
}
}
apply {
if (hdr.p4calc.isValid()) {
calculate.apply();
} else {
operation_drop();
}
}
}
/*************************************************************************
**************** E G R E S S P R O C E S S I N G *******************
*************************************************************************/
control MyEgress(inout headers hdr,
inout metadata meta,
inout standard_metadata_t standard_metadata) {
apply { }
}
/*************************************************************************
************* C H E C K S U M C O M P U T A T I O N **************
*************************************************************************/
control MyComputeChecksum(inout headers hdr, inout metadata meta) {
apply { }
}
/*************************************************************************
*********************** D E P A R S E R *******************************
*************************************************************************/
control MyDeparser(packet_out packet, in headers hdr) {
apply {
packet.emit(hdr.ethernet);
packet.emit(hdr.p4calc);
}
}
/*************************************************************************
*********************** S W I T T C H **********************************
*************************************************************************/
V1Switch(
MyParser(),
MyVerifyChecksum(),
MyIngress(),
MyEgress(),
MyComputeChecksum(),
MyDeparser()
) main;

View File

@@ -0,0 +1,12 @@
{
"hosts": [
"h1",
"h2"
],
"switches": {
"s1": { "runtime_json" : "s1-runtime.json" }
},
"links": [
["h1", "s1"], ["h2", "s1"]
]
}

View File

@@ -0,0 +1,5 @@
BMV2_SWITCH_EXE = simple_switch_grpc
NO_P4 = true
P4C_ARGS = --p4runtime-file $(basename $@).p4info --p4runtime-format text
include ../../utils/Makefile

After

Width:  |  Height:  |  Size: 154 B

View File

@@ -0,0 +1,192 @@
# Implementing ECN
## Introduction
The objective of this tutorial is to extend basic L3 forwarding with
an implementation of Explicit Congestion Notification (ECN).
ECN allows end-to-end notification of network congestion without
dropping packets. If an end-host supports ECN, it puts the value of 1
or 2 in the `ipv4.ecn` field. For such packets, each switch may
change the value to 3 if the queue size is larger than a threshold.
The receiver copies the value to sender, and the sender can lower the
rate.
As before, we have already defined the control plane rules for
routing, so you only need to implement the data plane logic of your P4
program.
> **Spoiler alert:** There is a reference solution in the `solution`
> sub-directory. Feel free to compare your implementation to the reference.
## Step 1: Run the (incomplete) starter code
The directory with this README also contains a skeleton P4 program,
`ecn.p4`, which initially implements L3 forwarding. Your job (in the
next step) will be to extend it to properly append set the ECN bits
Before that, let's compile the incomplete `ecn.p4` and bring up a
network in Mininet to test its behavior.
1. In your shell, run:
```bash
make
```
This will:
* compile `ecn.p4`, and
* start a Mininet instance with three switches (`s1`, `s2`, `s3`) configured
in a triangle. There are 5 hosts. `h1` and `h11` are connected to `s1`.
`h2` and `h22` are connected to `s2` and `h3` is connected to `s3`.
* The hosts are assigned IPs of `10.0.1.1`, `10.0.2.2`, etc
(`10.0.<Switchid>.<hostID>`).
* The control plane programs the P4 tables in each switch based on
`sx-runtime.json`
2. We want to send a low rate traffic from `h1` to `h2` and a high
rate iperf traffic from `h11` to `h22`. The link between `s1` and
`s2` is common between the flows and is a bottleneck because we
reduced its bandwidth to 512kbps in topology.json. Therefore, if we
capture packets at `h2`, we should see the right ECN value.
![Setup](setup.png)
3. You should now see a Mininet command prompt. Open four terminals
for `h1`, `h11`, `h2`, `h22`, respectively:
```bash
mininet> xterm h1 h11 h2 h22
```
3. In `h2`'s XTerm, start the server that captures packets:
```bash
./receive.py
```
4. in `h22`'s XTerm, start the iperf UDP server:
```bash
iperf -s -u
```
5. In `h1`'s XTerm, send one packet per second to `h2` using send.py
say for 30 seconds:
```bash
./send.py 10.0.2.2 "P4 is cool" 30
```
The message "P4 is cool" should be received in `h2`'s xterm,
6. In `h11`'s XTerm, start iperf client sending for 15 seconds
```bash
iperf -c 10.0.2.22 -t 15 -u
```
7. At `h2`, the `ipv4.tos` field (DiffServ+ECN) is always 1
8. type `exit` to close each XTerm window
Your job is to extend the code in `ecn.p4` to implement the ECN logic
for setting the ECN flag.
## Step 2: Implement ECN
The `ecn.p4` file contains a skeleton P4 program with key pieces of
logic replaced by `TODO` comments. These should guide your
implementation---replace each `TODO` with logic implementing the
missing piece.
First we have to change the ipv4_t header by splitting the TOS field
into DiffServ and ECN fields. Remember to update the checksum block
accordingly. Then, in the egress control block we must compare the
queue length with ECN_THRESHOLD. If the queue length is larger than
the threshold, the ECN flag will be set. Note that this logic should
happen only if the end-host declared supporting ECN by setting the
original ECN to 1 or 2.
A complete `ecn.p4` will contain the following components:
1. Header type definitions for Ethernet (`ethernet_t`) and IPv4 (`ipv4_t`).
2. Parsers for Ethernet, IPv4,
3. An action to drop a packet, using `mark_to_drop()`.
4. An action (called `ipv4_forward`), which will:
1. Set the egress port for the next hop.
2. Update the ethernet destination address with the address of
the next hop.
3. Update the ethernet source address with the address of the switch.
4. Decrement the TTL.
5. An egress control block that checks the ECN and
`standard_metadata.enq_qdepth` and sets the ipv4.ecn.
6. A deparser that selects the order in which fields inserted into the outgoing
packet.
7. A `package` instantiation supplied with the parser, control,
checksum verification and recomputation and deparser.
## Step 3: Run your solution
Follow the instructions from Step 1. This time, when your message from
`h1` is delivered to `h2`, you should see `tos` values change from 1
to 3 as the queue builds up. `tos` may change back to 1 when iperf
finishes and the queue depletes.
To easily track the `tos` values you may want to redirect the output
of `h2` to a file by running the following for `h2`
```bash
./receive.py > h2.log
```
and just print the `tos` values `grep tos h2.log` in a separate window
```
tos = 0x1
tos = 0x1
tos = 0x1
tos = 0x1
tos = 0x1
tos = 0x1
tos = 0x1
tos = 0x1
tos = 0x1
tos = 0x1
tos = 0x1
tos = 0x1
tos = 0x1
tos = 0x3
tos = 0x3
tos = 0x3
tos = 0x3
tos = 0x3
tos = 0x3
tos = 0x1
tos = 0x1
tos = 0x1
tos = 0x1
tos = 0x1
tos = 0x1
```
### Food for thought
How can we let the user configure the threshold?
### Troubleshooting
There are several ways that problems might manifest:
1. `ecn.p4` fails to compile. In this case, `make` will report the
error emitted from the compiler and stop.
2. `ecn.p4` compiles but does not support the control plane rules in
the `sX-runtime.json` files that `make` tries to install using
a Python controller. In this case, `make` will log the controller output
in the `logs` directory. Use these error messages to fix your `ecn.p4`
implementation.
3. `ecn.p4` compiles, and the control plane rules are installed, but
the switch does not process packets in the desired way. The
`/tmp/p4s.<switch-name>.log` files contain trace messages
describing how each switch processes each packet. The output is
detailed and can help pinpoint logic errors in your implementation.
The `build/<switch-name>-<interface-name>.pcap` also contains the
pcap of packets on each interface. Use `tcpdump -r <filename> -xxx`
to print the hexdump of the packets.
4. `ecn.p4` compiles and all rules are installed. Packets go through
and the logs show that the queue length was not high enough to set
the ECN bit. Then either lower the threshold in the p4 code or
reduce the link bandwidth in `topology.json`
#### Cleaning up Mininet
In the latter two cases above, `make` may leave a Mininet instance
running in the background. Use the following command to clean up
these instances:
```bash
make stop
```

187
exercises/other/ecn/ecn.p4 Normal file
View File

@@ -0,0 +1,187 @@
/* -*- P4_16 -*- */
#include <core.p4>
#include <v1model.p4>
const bit<8> TCP_PROTOCOL = 0x06;
const bit<16> TYPE_IPV4 = 0x800;
const bit<19> ECN_THRESHOLD = 10;
/*************************************************************************
*********************** H E A D E R S ***********************************
*************************************************************************/
typedef bit<9> egressSpec_t;
typedef bit<48> macAddr_t;
typedef bit<32> ip4Addr_t;
header ethernet_t {
macAddr_t dstAddr;
macAddr_t srcAddr;
bit<16> etherType;
}
/*
* TODO: split tos to two fields 6 bit diffserv and 2 bit ecn
*/
header ipv4_t {
bit<4> version;
bit<4> ihl;
bit<8> tos;
bit<16> totalLen;
bit<16> identification;
bit<3> flags;
bit<13> fragOffset;
bit<8> ttl;
bit<8> protocol;
bit<16> hdrChecksum;
ip4Addr_t srcAddr;
ip4Addr_t dstAddr;
}
struct metadata {
}
struct headers {
ethernet_t ethernet;
ipv4_t ipv4;
}
/*************************************************************************
*********************** P A R S E R ***********************************
*************************************************************************/
parser MyParser(packet_in packet,
out headers hdr,
inout metadata meta,
inout standard_metadata_t standard_metadata) {
state start {
transition parse_ethernet;
}
state parse_ethernet {
packet.extract(hdr.ethernet);
transition select(hdr.ethernet.etherType) {
TYPE_IPV4: parse_ipv4;
default: accept;
}
}
state parse_ipv4 {
packet.extract(hdr.ipv4);
transition accept;
}
}
/*************************************************************************
************ C H E C K S U M V E R I F I C A T I O N *************
*************************************************************************/
control MyVerifyChecksum(inout headers hdr, inout metadata meta) {
apply { }
}
/*************************************************************************
************** I N G R E S S P R O C E S S I N G *******************
*************************************************************************/
control MyIngress(inout headers hdr,
inout metadata meta,
inout standard_metadata_t standard_metadata) {
action drop() {
mark_to_drop();
}
action ipv4_forward(macAddr_t dstAddr, egressSpec_t port) {
standard_metadata.egress_spec = port;
hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;
hdr.ethernet.dstAddr = dstAddr;
hdr.ipv4.ttl = hdr.ipv4.ttl - 1;
}
table ipv4_lpm {
key = {
hdr.ipv4.dstAddr: lpm;
}
actions = {
ipv4_forward;
drop;
}
size = 1024;
default_action = drop;
}
apply {
if (hdr.ipv4.isValid()) {
ipv4_lpm.apply();
}
}
}
/*************************************************************************
**************** E G R E S S P R O C E S S I N G *******************
*************************************************************************/
control MyEgress(inout headers hdr,
inout metadata meta,
inout standard_metadata_t standard_metadata) {
apply {
/*
* TODO:
* - if ecn is 1 or 2
* - compare standard_metadata.enq_qdepth with threshold
* and set hdr.ipv4.ecn to 3 if larger
*/
}
}
/*************************************************************************
************* C H E C K S U M C O M P U T A T I O N **************
*************************************************************************/
control MyComputeChecksum(inout headers hdr, inout metadata meta) {
apply {
/* TODO: replace tos with diffserve and ecn */
update_checksum(
hdr.ipv4.isValid(),
{ hdr.ipv4.version,
hdr.ipv4.ihl,
hdr.ipv4.tos,
hdr.ipv4.totalLen,
hdr.ipv4.identification,
hdr.ipv4.flags,
hdr.ipv4.fragOffset,
hdr.ipv4.ttl,
hdr.ipv4.protocol,
hdr.ipv4.srcAddr,
hdr.ipv4.dstAddr },
hdr.ipv4.hdrChecksum,
HashAlgorithm.csum16);
}
}
/*************************************************************************
*********************** D E P A R S E R *******************************
*************************************************************************/
control MyDeparser(packet_out packet, in headers hdr) {
apply {
packet.emit(hdr.ethernet);
packet.emit(hdr.ipv4);
}
}
/*************************************************************************
*********************** S W I T C H *******************************
*************************************************************************/
V1Switch(
MyParser(),
MyVerifyChecksum(),
MyIngress(),
MyEgress(),
MyComputeChecksum(),
MyDeparser()
) main;

37
exercises/other/ecn/receive.py Executable file
View File

@@ -0,0 +1,37 @@
#!/usr/bin/env python
import sys
import struct
from scapy.all import sniff, sendp, hexdump, get_if_list, get_if_hwaddr
from scapy.all import Packet
from scapy.all import IP, UDP, Raw
from scapy.layers.inet import _IPOption_HDR
def get_if():
ifs=get_if_list()
iface=None
for i in get_if_list():
if "eth0" in i:
iface=i
break;
if not iface:
print "Cannot find eth0 interface"
exit(1)
return iface
def handle_pkt(pkt):
print "got a packet"
pkt.show2()
# hexdump(pkt)
sys.stdout.flush()
def main():
iface = 'h2-eth0'
print "sniffing on %s" % iface
sys.stdout.flush()
sniff(filter="udp and port 4321", iface = iface,
prn = lambda x: handle_pkt(x))
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,52 @@
{
"target": "bmv2",
"p4info": "build/ecn.p4info",
"bmv2_json": "build/ecn.json",
"table_entries": [
{
"table": "MyIngress.ipv4_lpm",
"match": {
"hdr.ipv4.dstAddr": ["10.0.1.1", 32]
},
"action_name": "MyIngress.ipv4_forward",
"action_params": {
"dstAddr": "00:00:00:00:01:01",
"port": 2
}
},
{
"table": "MyIngress.ipv4_lpm",
"match": {
"hdr.ipv4.dstAddr": ["10.0.1.11", 32]
},
"action_name": "MyIngress.ipv4_forward",
"action_params": {
"dstAddr": "00:00:00:00:01:0b",
"port": 1
}
},
{
"table": "MyIngress.ipv4_lpm",
"match": {
"hdr.ipv4.dstAddr": ["10.0.2.0", 24]
},
"action_name": "MyIngress.ipv4_forward",
"action_params": {
"dstAddr": "00:00:00:02:03:00",
"port": 3
}
},
{
"table": "MyIngress.ipv4_lpm",
"match": {
"hdr.ipv4.dstAddr": ["10.0.3.0", 24]
},
"action_name": "MyIngress.ipv4_forward",
"action_params": {
"dstAddr": "00:00:00:03:02:00",
"port": 4
}
}
]
}

View File

@@ -0,0 +1,51 @@
{
"target": "bmv2",
"p4info": "build/ecn.p4info",
"bmv2_json": "build/ecn.json",
"table_entries": [
{
"table": "MyIngress.ipv4_lpm",
"match": {
"hdr.ipv4.dstAddr": ["10.0.2.2", 32]
},
"action_name": "MyIngress.ipv4_forward",
"action_params": {
"dstAddr": "00:00:00:00:02:02",
"port": 2
}
},
{
"table": "MyIngress.ipv4_lpm",
"match": {
"hdr.ipv4.dstAddr": ["10.0.2.22", 32]
},
"action_name": "MyIngress.ipv4_forward",
"action_params": {
"dstAddr": "00:00:00:00:02:16",
"port": 1
}
},
{
"table": "MyIngress.ipv4_lpm",
"match": {
"hdr.ipv4.dstAddr": ["10.0.1.0", 24]
},
"action_name": "MyIngress.ipv4_forward",
"action_params": {
"dstAddr": "00:00:00:01:03:00",
"port": 3
}
},
{
"table": "MyIngress.ipv4_lpm",
"match": {
"hdr.ipv4.dstAddr": ["10.0.3.0", 24]
},
"action_name": "MyIngress.ipv4_forward",
"action_params": {
"dstAddr": "00:00:00:03:03:00",
"port": 4
}
}
]
}

View File

@@ -0,0 +1,40 @@
{
"target": "bmv2",
"p4info": "build/ecn.p4info",
"bmv2_json": "build/ecn.json",
"table_entries": [
{
"table": "MyIngress.ipv4_lpm",
"match": {
"hdr.ipv4.dstAddr": ["10.0.3.3", 32]
},
"action_name": "MyIngress.ipv4_forward",
"action_params": {
"dstAddr": "00:00:00:00:03:03",
"port": 1
}
},
{
"table": "MyIngress.ipv4_lpm",
"match": {
"hdr.ipv4.dstAddr": ["10.0.1.0", 24]
},
"action_name": "MyIngress.ipv4_forward",
"action_params": {
"dstAddr": "00:00:00:01:04:00",
"port": 2
}
},
{
"table": "MyIngress.ipv4_lpm",
"match": {
"hdr.ipv4.dstAddr": ["10.0.2.0", 24]
},
"action_name": "MyIngress.ipv4_forward",
"action_params": {
"dstAddr": "00:00:00:02:04:00",
"port": 3
}
}
]
}

50
exercises/other/ecn/send.py Executable file
View File

@@ -0,0 +1,50 @@
#!/usr/bin/env python
import argparse
import sys
import socket
import random
import struct
from scapy.all import sendp, send, hexdump, get_if_list, get_if_hwaddr
from scapy.all import Packet, IPOption
from scapy.all import Ether, IP, UDP
from scapy.all import IntField, FieldListField, FieldLenField, ShortField
from scapy.layers.inet import _IPOption_HDR
from time import sleep
def get_if():
ifs=get_if_list()
iface=None # "h1-eth0"
for i in get_if_list():
if "eth0" in i:
iface=i
break;
if not iface:
print "Cannot find eth0 interface"
exit(1)
return iface
def main():
if len(sys.argv)<4:
print 'pass 2 arguments: <destination> "<message>" <duration>'
exit(1)
addr = socket.gethostbyname(sys.argv[1])
iface = get_if()
pkt = Ether(src=get_if_hwaddr(iface), dst="ff:ff:ff:ff:ff:ff") / IP(dst=addr, tos=1) / UDP(dport=4321, sport=1234) / sys.argv[2]
pkt.show2()
#hexdump(pkt)
try:
for i in range(int(sys.argv[3])):
sendp(pkt, iface=iface)
sleep(1)
except KeyboardInterrupt:
raise
if __name__ == '__main__':
main()

Binary file not shown.

After

Width:  |  Height:  |  Size: 221 KiB

View File

@@ -0,0 +1,188 @@
/* -*- P4_16 -*- */
#include <core.p4>
#include <v1model.p4>
const bit<8> TCP_PROTOCOL = 0x06;
const bit<16> TYPE_IPV4 = 0x800;
const bit<19> ECN_THRESHOLD = 10;
/*************************************************************************
*********************** H E A D E R S ***********************************
*************************************************************************/
typedef bit<9> egressSpec_t;
typedef bit<48> macAddr_t;
typedef bit<32> ip4Addr_t;
header ethernet_t {
macAddr_t dstAddr;
macAddr_t srcAddr;
bit<16> etherType;
}
header ipv4_t {
bit<4> version;
bit<4> ihl;
bit<6> diffserv;
bit<2> ecn;
bit<16> totalLen;
bit<16> identification;
bit<3> flags;
bit<13> fragOffset;
bit<8> ttl;
bit<8> protocol;
bit<16> hdrChecksum;
ip4Addr_t srcAddr;
ip4Addr_t dstAddr;
}
struct metadata {
}
struct headers {
ethernet_t ethernet;
ipv4_t ipv4;
}
/*************************************************************************
*********************** P A R S E R ***********************************
*************************************************************************/
parser MyParser(packet_in packet,
out headers hdr,
inout metadata meta,
inout standard_metadata_t standard_metadata) {
state start {
transition parse_ethernet;
}
state parse_ethernet {
packet.extract(hdr.ethernet);
transition select(hdr.ethernet.etherType) {
TYPE_IPV4: parse_ipv4;
default: accept;
}
}
state parse_ipv4 {
packet.extract(hdr.ipv4);
transition accept;
}
}
/*************************************************************************
************ C H E C K S U M V E R I F I C A T I O N *************
*************************************************************************/
control MyVerifyChecksum(inout headers hdr, inout metadata meta) {
apply { }
}
/*************************************************************************
************** I N G R E S S P R O C E S S I N G *******************
*************************************************************************/
control MyIngress(inout headers hdr,
inout metadata meta,
inout standard_metadata_t standard_metadata) {
action drop() {
mark_to_drop();
}
action ipv4_forward(macAddr_t dstAddr, egressSpec_t port) {
standard_metadata.egress_spec = port;
hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;
hdr.ethernet.dstAddr = dstAddr;
hdr.ipv4.ttl = hdr.ipv4.ttl - 1;
}
table ipv4_lpm {
key = {
hdr.ipv4.dstAddr: lpm;
}
actions = {
ipv4_forward;
drop;
NoAction;
}
size = 1024;
default_action = NoAction();
}
apply {
if (hdr.ipv4.isValid()) {
ipv4_lpm.apply();
}
}
}
/*************************************************************************
**************** E G R E S S P R O C E S S I N G *******************
*************************************************************************/
control MyEgress(inout headers hdr,
inout metadata meta,
inout standard_metadata_t standard_metadata) {
action mark_ecn() {
hdr.ipv4.ecn = 3;
}
apply {
if (hdr.ipv4.ecn == 1 || hdr.ipv4.ecn == 2){
if (standard_metadata.enq_qdepth >= ECN_THRESHOLD){
mark_ecn();
}
}
}
}
/*************************************************************************
************* C H E C K S U M C O M P U T A T I O N **************
*************************************************************************/
control MyComputeChecksum(inout headers hdr, inout metadata meta) {
apply {
update_checksum(
hdr.ipv4.isValid(),
{ hdr.ipv4.version,
hdr.ipv4.ihl,
hdr.ipv4.diffserv,
hdr.ipv4.ecn,
hdr.ipv4.totalLen,
hdr.ipv4.identification,
hdr.ipv4.flags,
hdr.ipv4.fragOffset,
hdr.ipv4.ttl,
hdr.ipv4.protocol,
hdr.ipv4.srcAddr,
hdr.ipv4.dstAddr },
hdr.ipv4.hdrChecksum,
HashAlgorithm.csum16);
}
}
/*************************************************************************
*********************** D E P A R S E R *******************************
*************************************************************************/
control MyDeparser(packet_out packet, in headers hdr) {
apply {
packet.emit(hdr.ethernet);
packet.emit(hdr.ipv4);
}
}
/*************************************************************************
*********************** S W I T C H *******************************
*************************************************************************/
V1Switch(
MyParser(),
MyVerifyChecksum(),
MyIngress(),
MyEgress(),
MyComputeChecksum(),
MyDeparser()
) main;

View File

@@ -0,0 +1,18 @@
{
"hosts": [
"h1",
"h2",
"h3",
"h11",
"h22"
],
"switches": {
"s1": { "runtime_json" : "s1-runtime.json" },
"s2": { "runtime_json" : "s2-runtime.json" },
"s3": { "runtime_json" : "s3-runtime.json" }
},
"links": [
["h1", "s1"], ["h11", "s1"], ["s1", "s2", "0", 0.5], ["s1", "s3"],
["s3", "s2"], ["s2", "h2"], ["s2", "h22"], ["s3", "h3"]
]
}