P4 Developer Day 2018 Spring (#159)

* Repository reorganization for 2018 Spring P4 Developer Day.

* Port tutorial exercises to P4Runtime with static controller (#156)

* Switch VM to a minimal Ubuntu 16.04 desktop image

* Add commands to install Protobuf Python bindings to user_bootstrap.sh

* Implement P4Runtime static controller for use in exercises

From the exercise perspective, the main difference is that control plane
rules are now specified using JSON files instead of CLI commands. Such
JSON files define rules that use the same name for tables, keys, etc. as
in the P4Info file.

All P4Runtime requests generated as part of the make run process are
logged in the exercise's “logs” directory, making it easier for students
to see the actual P4Runtime messages sent to the switch.

Only the "basic" exercise has been ported to use P4Runtime.
The "p4runtime" exercise has been updated to work with P4Runtime
protocol changes.

Known issues:
- make run hangs in case of errors when running the P4Runtime controller
    (probably due to gRPC stream channel threads not terminated properly)
- missing support for inserting table entries with default action
    (can specify in P4 program as a workaround)

* Force install protobuf python module

* Fixing Ctrl-C hang by shutdown switches

* Moving gRPC error print to function for readability

Unforuntately, if this gets moved out of the file, the process hangs.
We'll need to figure out how why later.

* Renaming ShutdownAllSwitches -> ShutdownAllSwitchConnections

* Reverting counter index change

* Porting the ECN exercise to use P4 Runtime Static Controller

* updating the README in the ecn exercise to reflect the change in rule files

* Allow set table default action in P4Runtime static controller

* Fixed undefined match string when printing P4Runtime table entry

* Updated basic_tunnel exercise to use P4Runtime controller.

* Changed default action in the basic exercise's ipv4_lpm table to drop

* Porting the MRI exercise to use P4runtime with static controller

* Updating readme to reflect the change of controller for mri

* Update calc exercise for P4Runtime static controller

* Port source_routing to P4 Runtime static controller (#157)

* Port Load Balance to P4 Runtime Static Controller (#158)
This commit is contained in:
Nate Foster
2018-06-01 02:54:33 -04:00
committed by GitHub
parent e7e6899d5c
commit dc08948a34
503 changed files with 1432 additions and 30666 deletions

5
exercises/ecn/Makefile Normal file
View File

@@ -0,0 +1,5 @@
BMV2_SWITCH_EXE = simple_switch_grpc
NO_P4 = true
P4C_ARGS = --p4runtime-file $(basename $@).p4info --p4runtime-format text
include ../../utils/Makefile

After

Width:  |  Height:  |  Size: 154 B

198
exercises/ecn/README.md Normal file
View File

@@ -0,0 +1,198 @@
# Implementing ECN
## Introduction
The objective of this tutorial is to extend basic L3 forwarding with
an implementation of Explicit Congestion Notification (ECN).
ECN allows end-to-end notification of network congestion without
dropping packets. If an end-host supports ECN, it puts the value of 1
or 2 in the `ipv4.ecn` field. For such packets, each switch may
change the value to 3 if the queue size is larger than a threshold.
The receiver copies the value to sender, and the sender can lower the
rate.
As before, we have already defined the control plane rules for
routing, so you only need to implement the data plane logic of your P4
program.
> **Spoiler alert:** There is a reference solution in the `solution`
> sub-directory. Feel free to compare your implementation to the reference.
## Step 1: Run the (incomplete) starter code
The directory with this README also contains a skeleton P4 program,
`ecn.p4`, which initially implements L3 forwarding. Your job (in the
next step) will be to extend it to properly append set the ECN bits
Before that, let's compile the incomplete `ecn.p4` and bring up a
network in Mininet to test its behavior.
1. In your shell, run:
```bash
make
```
This will:
* compile `ecn.p4`, and
* start a Mininet instance with three switches (`s1`, `s2`, `s3`) configured
in a triangle. There are 5 hosts. `h1` and `h11` are connected to `s1`.
`h2` and `h22` are connected to `s2` and `h3` is connected to `s3`.
* The hosts are assigned IPs of `10.0.1.1`, `10.0.2.2`, etc
(`10.0.<Switchid>.<hostID>`).
* The control plane programs the P4 tables in each switch based on
`sx-runtime.json`
2. We want to send a low rate traffic from `h1` to `h2` and a high
rate iperf traffic from `h11` to `h22`. The link between `s1` and
`s2` is common between the flows and is a bottleneck because we
reduced its bandwidth to 512kbps in topology.json. Therefore, if we
capture packets at `h2`, we should see the right ECN value.
![Setup](setup.png)
3. You should now see a Mininet command prompt. Open four terminals
for `h1`, `h11`, `h2`, `h22`, respectively:
```bash
mininet> xterm h1 h11 h2 h22
```
3. In `h2`'s XTerm, start the server that captures packets:
```bash
./receive.py
```
4. in `h22`'s XTerm, start the iperf UDP server:
```bash
iperf -s -u
```
5. In `h1`'s XTerm, send one packet per second to `h2` using send.py
say for 30 seconds:
```bash
./send.py 10.0.2.2 "P4 is cool" 30
```
The message "P4 is cool" should be received in `h2`'s xterm,
6. In `h11`'s XTerm, start iperf client sending for 15 seconds
```bash
iperf -c 10.0.2.22 -t 15 -u
```
7. At `h2`, the `ipv4.tos` field (DiffServ+ECN) is always 1
8. type `exit` to close each XTerm window
Your job is to extend the code in `ecn.p4` to implement the ECN logic
for setting the ECN flag.
## Step 2: Implement ECN
The `ecn.p4` file contains a skeleton P4 program with key pieces of
logic replaced by `TODO` comments. These should guide your
implementation---replace each `TODO` with logic implementing the
missing piece.
First we have to change the ipv4_t header by splitting the TOS field
into DiffServ and ECN fields. Remember to update the checksum block
accordingly. Then, in the egress control block we must compare the
queue length with ECN_THRESHOLD. If the queue length is larger than
the threshold, the ECN flag will be set. Note that this logic should
happen only if the end-host declared supporting ECN by setting the
original ECN to 1 or 2.
A complete `ecn.p4` will contain the following components:
1. Header type definitions for Ethernet (`ethernet_t`) and IPv4 (`ipv4_t`).
2. Parsers for Ethernet, IPv4,
3. An action to drop a packet, using `mark_to_drop()`.
4. An action (called `ipv4_forward`), which will:
1. Set the egress port for the next hop.
2. Update the ethernet destination address with the address of
the next hop.
3. Update the ethernet source address with the address of the switch.
4. Decrement the TTL.
5. An egress control block that checks the ECN and
`standard_metadata.enq_qdepth` and sets the ipv4.ecn.
6. A deparser that selects the order in which fields inserted into the outgoing
packet.
7. A `package` instantiation supplied with the parser, control,
checksum verification and recomputation and deparser.
## Step 3: Run your solution
Follow the instructions from Step 1. This time, when your message from
`h1` is delivered to `h2`, you should see `tos` values change from 1
to 3 as the queue builds up. `tos` may change back to 1 when iperf
finishes and the queue depletes.
To easily track the `tos` values you may want to redirect the output
of `h2` to a file by running the following for `h2`
```bash
./receive.py > h2.log
```
and just print the `tos` values `grep tos h2.log` in a separate window
```
tos = 0x1
tos = 0x1
tos = 0x1
tos = 0x1
tos = 0x1
tos = 0x1
tos = 0x1
tos = 0x1
tos = 0x1
tos = 0x1
tos = 0x1
tos = 0x1
tos = 0x1
tos = 0x3
tos = 0x3
tos = 0x3
tos = 0x3
tos = 0x3
tos = 0x3
tos = 0x1
tos = 0x1
tos = 0x1
tos = 0x1
tos = 0x1
tos = 0x1
```
### Food for thought
How can we let the user configure the threshold?
### Troubleshooting
There are several ways that problems might manifest:
1. `ecn.p4` fails to compile. In this case, `make` will report the
error emitted from the compiler and stop.
2. `ecn.p4` compiles but does not support the control plane rules in
the `sX-runtime.json` files that `make` tries to install using
the BMv2 CLI. In this case, `make` will log the CLI tool output
in the `logs` directory. Use these error messages to fix your `ecn.p4`
implementation.
3. `ecn.p4` compiles, and the control plane rules are installed, but
the switch does not process packets in the desired way. The
`/tmp/p4s.<switch-name>.log` files contain trace messages
describing how each switch processes each packet. The output is
detailed and can help pinpoint logic errors in your implementation.
The `build/<switch-name>-<interface-name>.pcap` also contains the
pcap of packets on each interface. Use `tcpdump -r <filename> -xxx`
to print the hexdump of the packets.
4. `ecn.p4` compiles and all rules are installed. Packets go through
and the logs show that the queue length was not high enough to set
the ECN bit. Then either lower the threshold in the p4 code or
reduce the link bandwidth in `topology.json`
#### Cleaning up Mininet
In the latter two cases above, `make` may leave a Mininet instance
running in the background. Use the following command to clean up
these instances:
```bash
make stop
```
## Next Steps
Congratulations, your implementation works! Move on to the next
exercise: [Multi-Hop Route Inspection](../mri), which identifies which
link is the source of congestion.

187
exercises/ecn/ecn.p4 Normal file
View File

@@ -0,0 +1,187 @@
/* -*- P4_16 -*- */
#include <core.p4>
#include <v1model.p4>
const bit<8> TCP_PROTOCOL = 0x06;
const bit<16> TYPE_IPV4 = 0x800;
const bit<19> ECN_THRESHOLD = 10;
/*************************************************************************
*********************** H E A D E R S ***********************************
*************************************************************************/
typedef bit<9> egressSpec_t;
typedef bit<48> macAddr_t;
typedef bit<32> ip4Addr_t;
header ethernet_t {
macAddr_t dstAddr;
macAddr_t srcAddr;
bit<16> etherType;
}
/*
* TODO: split tos to two fields 6 bit diffserv and 2 bit ecn
*/
header ipv4_t {
bit<4> version;
bit<4> ihl;
bit<8> tos;
bit<16> totalLen;
bit<16> identification;
bit<3> flags;
bit<13> fragOffset;
bit<8> ttl;
bit<8> protocol;
bit<16> hdrChecksum;
ip4Addr_t srcAddr;
ip4Addr_t dstAddr;
}
struct metadata {
}
struct headers {
ethernet_t ethernet;
ipv4_t ipv4;
}
/*************************************************************************
*********************** P A R S E R ***********************************
*************************************************************************/
parser MyParser(packet_in packet,
out headers hdr,
inout metadata meta,
inout standard_metadata_t standard_metadata) {
state start {
transition parse_ethernet;
}
state parse_ethernet {
packet.extract(hdr.ethernet);
transition select(hdr.ethernet.etherType) {
TYPE_IPV4: parse_ipv4;
default: accept;
}
}
state parse_ipv4 {
packet.extract(hdr.ipv4);
transition accept;
}
}
/*************************************************************************
************ C H E C K S U M V E R I F I C A T I O N *************
*************************************************************************/
control MyVerifyChecksum(inout headers hdr, inout metadata meta) {
apply { }
}
/*************************************************************************
************** I N G R E S S P R O C E S S I N G *******************
*************************************************************************/
control MyIngress(inout headers hdr,
inout metadata meta,
inout standard_metadata_t standard_metadata) {
action drop() {
mark_to_drop();
}
action ipv4_forward(macAddr_t dstAddr, egressSpec_t port) {
standard_metadata.egress_spec = port;
hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;
hdr.ethernet.dstAddr = dstAddr;
hdr.ipv4.ttl = hdr.ipv4.ttl - 1;
}
table ipv4_lpm {
key = {
hdr.ipv4.dstAddr: lpm;
}
actions = {
ipv4_forward;
drop;
}
size = 1024;
default_action = drop;
}
apply {
if (hdr.ipv4.isValid()) {
ipv4_lpm.apply();
}
}
}
/*************************************************************************
**************** E G R E S S P R O C E S S I N G *******************
*************************************************************************/
control MyEgress(inout headers hdr,
inout metadata meta,
inout standard_metadata_t standard_metadata) {
apply {
/*
* TODO:
* - if ecn is 1 or 2
* - compare standard_metadata.enq_qdepth with threshold
* and set hdr.ipv4.ecn to 3 if larger
*/
}
}
/*************************************************************************
************* C H E C K S U M C O M P U T A T I O N **************
*************************************************************************/
control MyComputeChecksum(inout headers hdr, inout metadata meta) {
apply {
/* TODO: replace tos with diffserve and ecn */
update_checksum(
hdr.ipv4.isValid(),
{ hdr.ipv4.version,
hdr.ipv4.ihl,
hdr.ipv4.tos,
hdr.ipv4.totalLen,
hdr.ipv4.identification,
hdr.ipv4.flags,
hdr.ipv4.fragOffset,
hdr.ipv4.ttl,
hdr.ipv4.protocol,
hdr.ipv4.srcAddr,
hdr.ipv4.dstAddr },
hdr.ipv4.hdrChecksum,
HashAlgorithm.csum16);
}
}
/*************************************************************************
*********************** D E P A R S E R *******************************
*************************************************************************/
control MyDeparser(packet_out packet, in headers hdr) {
apply {
packet.emit(hdr.ethernet);
packet.emit(hdr.ipv4);
}
}
/*************************************************************************
*********************** S W I T C H *******************************
*************************************************************************/
V1Switch(
MyParser(),
MyVerifyChecksum(),
MyIngress(),
MyEgress(),
MyComputeChecksum(),
MyDeparser()
) main;

37
exercises/ecn/receive.py Executable file
View File

@@ -0,0 +1,37 @@
#!/usr/bin/env python
import sys
import struct
from scapy.all import sniff, sendp, hexdump, get_if_list, get_if_hwaddr
from scapy.all import Packet
from scapy.all import IP, UDP, Raw
from scapy.layers.inet import _IPOption_HDR
def get_if():
ifs=get_if_list()
iface=None
for i in get_if_list():
if "eth0" in i:
iface=i
break;
if not iface:
print "Cannot find eth0 interface"
exit(1)
return iface
def handle_pkt(pkt):
print "got a packet"
pkt.show2()
# hexdump(pkt)
sys.stdout.flush()
def main():
iface = 'h2-eth0'
print "sniffing on %s" % iface
sys.stdout.flush()
sniff(filter="udp and port 4321", iface = iface,
prn = lambda x: handle_pkt(x))
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,52 @@
{
"target": "bmv2",
"p4info": "build/ecn.p4info",
"bmv2_json": "build/ecn.json",
"table_entries": [
{
"table": "MyIngress.ipv4_lpm",
"match": {
"hdr.ipv4.dstAddr": ["10.0.1.1", 32]
},
"action_name": "MyIngress.ipv4_forward",
"action_params": {
"dstAddr": "00:00:00:00:01:01",
"port": 2
}
},
{
"table": "MyIngress.ipv4_lpm",
"match": {
"hdr.ipv4.dstAddr": ["10.0.1.11", 32]
},
"action_name": "MyIngress.ipv4_forward",
"action_params": {
"dstAddr": "00:00:00:00:01:0b",
"port": 1
}
},
{
"table": "MyIngress.ipv4_lpm",
"match": {
"hdr.ipv4.dstAddr": ["10.0.2.0", 24]
},
"action_name": "MyIngress.ipv4_forward",
"action_params": {
"dstAddr": "00:00:00:02:03:00",
"port": 3
}
},
{
"table": "MyIngress.ipv4_lpm",
"match": {
"hdr.ipv4.dstAddr": ["10.0.3.0", 24]
},
"action_name": "MyIngress.ipv4_forward",
"action_params": {
"dstAddr": "00:00:00:03:02:00",
"port": 4
}
}
]
}

View File

@@ -0,0 +1,51 @@
{
"target": "bmv2",
"p4info": "build/ecn.p4info",
"bmv2_json": "build/ecn.json",
"table_entries": [
{
"table": "MyIngress.ipv4_lpm",
"match": {
"hdr.ipv4.dstAddr": ["10.0.2.2", 32]
},
"action_name": "MyIngress.ipv4_forward",
"action_params": {
"dstAddr": "00:00:00:00:02:02",
"port": 2
}
},
{
"table": "MyIngress.ipv4_lpm",
"match": {
"hdr.ipv4.dstAddr": ["10.0.2.22", 32]
},
"action_name": "MyIngress.ipv4_forward",
"action_params": {
"dstAddr": "00:00:00:00:02:16",
"port": 1
}
},
{
"table": "MyIngress.ipv4_lpm",
"match": {
"hdr.ipv4.dstAddr": ["10.0.1.0", 24]
},
"action_name": "MyIngress.ipv4_forward",
"action_params": {
"dstAddr": "00:00:00:01:03:00",
"port": 3
}
},
{
"table": "MyIngress.ipv4_lpm",
"match": {
"hdr.ipv4.dstAddr": ["10.0.3.0", 24]
},
"action_name": "MyIngress.ipv4_forward",
"action_params": {
"dstAddr": "00:00:00:03:03:00",
"port": 4
}
}
]
}

View File

@@ -0,0 +1,40 @@
{
"target": "bmv2",
"p4info": "build/ecn.p4info",
"bmv2_json": "build/ecn.json",
"table_entries": [
{
"table": "MyIngress.ipv4_lpm",
"match": {
"hdr.ipv4.dstAddr": ["10.0.3.3", 32]
},
"action_name": "MyIngress.ipv4_forward",
"action_params": {
"dstAddr": "00:00:00:00:03:03",
"port": 1
}
},
{
"table": "MyIngress.ipv4_lpm",
"match": {
"hdr.ipv4.dstAddr": ["10.0.1.0", 24]
},
"action_name": "MyIngress.ipv4_forward",
"action_params": {
"dstAddr": "00:00:00:01:04:00",
"port": 2
}
},
{
"table": "MyIngress.ipv4_lpm",
"match": {
"hdr.ipv4.dstAddr": ["10.0.2.0", 24]
},
"action_name": "MyIngress.ipv4_forward",
"action_params": {
"dstAddr": "00:00:00:02:04:00",
"port": 3
}
}
]
}

50
exercises/ecn/send.py Executable file
View File

@@ -0,0 +1,50 @@
#!/usr/bin/env python
import argparse
import sys
import socket
import random
import struct
from scapy.all import sendp, send, hexdump, get_if_list, get_if_hwaddr
from scapy.all import Packet, IPOption
from scapy.all import Ether, IP, UDP
from scapy.all import IntField, FieldListField, FieldLenField, ShortField
from scapy.layers.inet import _IPOption_HDR
from time import sleep
def get_if():
ifs=get_if_list()
iface=None # "h1-eth0"
for i in get_if_list():
if "eth0" in i:
iface=i
break;
if not iface:
print "Cannot find eth0 interface"
exit(1)
return iface
def main():
if len(sys.argv)<4:
print 'pass 2 arguments: <destination> "<message>" <duration>'
exit(1)
addr = socket.gethostbyname(sys.argv[1])
iface = get_if()
pkt = Ether(src=get_if_hwaddr(iface), dst="ff:ff:ff:ff:ff:ff") / IP(dst=addr, tos=1) / UDP(dport=4321, sport=1234) / sys.argv[2]
pkt.show2()
#hexdump(pkt)
try:
for i in range(int(sys.argv[3])):
sendp(pkt, iface=iface)
sleep(1)
except KeyboardInterrupt:
raise
if __name__ == '__main__':
main()

BIN
exercises/ecn/setup.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 221 KiB

View File

@@ -0,0 +1,188 @@
/* -*- P4_16 -*- */
#include <core.p4>
#include <v1model.p4>
const bit<8> TCP_PROTOCOL = 0x06;
const bit<16> TYPE_IPV4 = 0x800;
const bit<19> ECN_THRESHOLD = 10;
/*************************************************************************
*********************** H E A D E R S ***********************************
*************************************************************************/
typedef bit<9> egressSpec_t;
typedef bit<48> macAddr_t;
typedef bit<32> ip4Addr_t;
header ethernet_t {
macAddr_t dstAddr;
macAddr_t srcAddr;
bit<16> etherType;
}
header ipv4_t {
bit<4> version;
bit<4> ihl;
bit<6> diffserv;
bit<2> ecn;
bit<16> totalLen;
bit<16> identification;
bit<3> flags;
bit<13> fragOffset;
bit<8> ttl;
bit<8> protocol;
bit<16> hdrChecksum;
ip4Addr_t srcAddr;
ip4Addr_t dstAddr;
}
struct metadata {
}
struct headers {
ethernet_t ethernet;
ipv4_t ipv4;
}
/*************************************************************************
*********************** P A R S E R ***********************************
*************************************************************************/
parser MyParser(packet_in packet,
out headers hdr,
inout metadata meta,
inout standard_metadata_t standard_metadata) {
state start {
transition parse_ethernet;
}
state parse_ethernet {
packet.extract(hdr.ethernet);
transition select(hdr.ethernet.etherType) {
TYPE_IPV4: parse_ipv4;
default: accept;
}
}
state parse_ipv4 {
packet.extract(hdr.ipv4);
transition accept;
}
}
/*************************************************************************
************ C H E C K S U M V E R I F I C A T I O N *************
*************************************************************************/
control MyVerifyChecksum(inout headers hdr, inout metadata meta) {
apply { }
}
/*************************************************************************
************** I N G R E S S P R O C E S S I N G *******************
*************************************************************************/
control MyIngress(inout headers hdr,
inout metadata meta,
inout standard_metadata_t standard_metadata) {
action drop() {
mark_to_drop();
}
action ipv4_forward(macAddr_t dstAddr, egressSpec_t port) {
standard_metadata.egress_spec = port;
hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;
hdr.ethernet.dstAddr = dstAddr;
hdr.ipv4.ttl = hdr.ipv4.ttl - 1;
}
table ipv4_lpm {
key = {
hdr.ipv4.dstAddr: lpm;
}
actions = {
ipv4_forward;
drop;
NoAction;
}
size = 1024;
default_action = NoAction();
}
apply {
if (hdr.ipv4.isValid()) {
ipv4_lpm.apply();
}
}
}
/*************************************************************************
**************** E G R E S S P R O C E S S I N G *******************
*************************************************************************/
control MyEgress(inout headers hdr,
inout metadata meta,
inout standard_metadata_t standard_metadata) {
action mark_ecn() {
hdr.ipv4.ecn = 3;
}
apply {
if (hdr.ipv4.ecn == 1 || hdr.ipv4.ecn == 2){
if (standard_metadata.enq_qdepth >= ECN_THRESHOLD){
mark_ecn();
}
}
}
}
/*************************************************************************
************* C H E C K S U M C O M P U T A T I O N **************
*************************************************************************/
control MyComputeChecksum(inout headers hdr, inout metadata meta) {
apply {
update_checksum(
hdr.ipv4.isValid(),
{ hdr.ipv4.version,
hdr.ipv4.ihl,
hdr.ipv4.diffserv,
hdr.ipv4.ecn,
hdr.ipv4.totalLen,
hdr.ipv4.identification,
hdr.ipv4.flags,
hdr.ipv4.fragOffset,
hdr.ipv4.ttl,
hdr.ipv4.protocol,
hdr.ipv4.srcAddr,
hdr.ipv4.dstAddr },
hdr.ipv4.hdrChecksum,
HashAlgorithm.csum16);
}
}
/*************************************************************************
*********************** D E P A R S E R *******************************
*************************************************************************/
control MyDeparser(packet_out packet, in headers hdr) {
apply {
packet.emit(hdr.ethernet);
packet.emit(hdr.ipv4);
}
}
/*************************************************************************
*********************** S W I T C H *******************************
*************************************************************************/
V1Switch(
MyParser(),
MyVerifyChecksum(),
MyIngress(),
MyEgress(),
MyComputeChecksum(),
MyDeparser()
) main;

View File

@@ -0,0 +1,18 @@
{
"hosts": [
"h1",
"h2",
"h3",
"h11",
"h22"
],
"switches": {
"s1": { "runtime_json" : "s1-runtime.json" },
"s2": { "runtime_json" : "s2-runtime.json" },
"s3": { "runtime_json" : "s3-runtime.json" }
},
"links": [
["h1", "s1"], ["h11", "s1"], ["s1", "s2", "0", 0.5], ["s1", "s3"],
["s3", "s2"], ["s2", "h2"], ["s2", "h22"], ["s3", "h3"]
]
}