P4 Developer Day 2018 Spring (#159)
* Repository reorganization for 2018 Spring P4 Developer Day. * Port tutorial exercises to P4Runtime with static controller (#156) * Switch VM to a minimal Ubuntu 16.04 desktop image * Add commands to install Protobuf Python bindings to user_bootstrap.sh * Implement P4Runtime static controller for use in exercises From the exercise perspective, the main difference is that control plane rules are now specified using JSON files instead of CLI commands. Such JSON files define rules that use the same name for tables, keys, etc. as in the P4Info file. All P4Runtime requests generated as part of the make run process are logged in the exercise's “logs” directory, making it easier for students to see the actual P4Runtime messages sent to the switch. Only the "basic" exercise has been ported to use P4Runtime. The "p4runtime" exercise has been updated to work with P4Runtime protocol changes. Known issues: - make run hangs in case of errors when running the P4Runtime controller (probably due to gRPC stream channel threads not terminated properly) - missing support for inserting table entries with default action (can specify in P4 program as a workaround) * Force install protobuf python module * Fixing Ctrl-C hang by shutdown switches * Moving gRPC error print to function for readability Unforuntately, if this gets moved out of the file, the process hangs. We'll need to figure out how why later. * Renaming ShutdownAllSwitches -> ShutdownAllSwitchConnections * Reverting counter index change * Porting the ECN exercise to use P4 Runtime Static Controller * updating the README in the ecn exercise to reflect the change in rule files * Allow set table default action in P4Runtime static controller * Fixed undefined match string when printing P4Runtime table entry * Updated basic_tunnel exercise to use P4Runtime controller. * Changed default action in the basic exercise's ipv4_lpm table to drop * Porting the MRI exercise to use P4runtime with static controller * Updating readme to reflect the change of controller for mri * Update calc exercise for P4Runtime static controller * Port source_routing to P4 Runtime static controller (#157) * Port Load Balance to P4 Runtime Static Controller (#158)
This commit is contained in:
5
exercises/p4runtime/Makefile
Normal file
5
exercises/p4runtime/Makefile
Normal file
@@ -0,0 +1,5 @@
|
||||
BMV2_SWITCH_EXE = simple_switch_grpc
|
||||
NO_P4 = true
|
||||
P4C_ARGS = --p4runtime-file $(basename $@).p4info --p4runtime-format text
|
||||
|
||||
include ../../utils/Makefile
|
||||
|
After Width: | Height: | Size: 154 B |
188
exercises/p4runtime/README.md
Normal file
188
exercises/p4runtime/README.md
Normal file
@@ -0,0 +1,188 @@
|
||||
# Implementing a Control Plane using P4 Runtime
|
||||
|
||||
## Introduction
|
||||
|
||||
In this exercise, we will be using P4 Runtime to send flow entries to the
|
||||
switch instead of using the switch's CLI. We will be building on the same P4
|
||||
program that you used in the [basic_tunnel](../basic_tunnel) exercise. The
|
||||
P4 program has been renamed to `advanced_tunnel.py` and has been augmented
|
||||
with two counters (`ingressTunnelCounter`, `egressTunnelCounter`) and
|
||||
two new actions (`myTunnel_ingress`, `myTunnel_egress`).
|
||||
|
||||
You will use the starter program, `mycontroller.py`, and a few helper
|
||||
libraries in the `p4runtime_lib` directory to create the table entries
|
||||
necessary to tunnel traffic between host 1 and 2.
|
||||
|
||||
> **Spoiler alert:** There is a reference solution in the `solution`
|
||||
> sub-directory. Feel free to compare your implementation to the
|
||||
> reference.
|
||||
|
||||
## Step 1: Run the (incomplete) starter code
|
||||
|
||||
The starter code for this assignment is in a file called `mycontroller.py`,
|
||||
and it will install only some of the rules that you need to tunnel traffic between
|
||||
two hosts.
|
||||
|
||||
Let's first compile the new P4 program, start the network, use `mycontroller.py`
|
||||
to install a few rules, and look at the `ingressTunnelCounter` to see that things
|
||||
are working as expected.
|
||||
|
||||
1. In your shell, run:
|
||||
```bash
|
||||
make
|
||||
```
|
||||
This will:
|
||||
* compile `advanced_tunnel.p4`,
|
||||
* start a Mininet instance with three switches (`s1`, `s2`, `s3`)
|
||||
configured in a triangle, each connected to one host (`h1`, `h2`, `h3`), and
|
||||
* assign IPs of `10.0.1.1`, `10.0.2.2`, `10.0.3.3` to the respective hosts.
|
||||
|
||||
2. You should now see a Mininet command prompt. Start a ping between h1 and h2:
|
||||
```bash
|
||||
mininet> h1 ping h2
|
||||
```
|
||||
Because there are no rules on the switches, you should **not** receive any
|
||||
replies yet. You should leave the ping running in this shell.
|
||||
|
||||
3. Open another shell and run the starter code:
|
||||
```bash
|
||||
cd ~/tutorials/P4D2_2017_Fall/exercises/p4runtime
|
||||
./mycontroller.py
|
||||
```
|
||||
This will install the `advanced_tunnel.p4` program on the switches and push the
|
||||
tunnel ingress rules.
|
||||
The program prints the tunnel ingress and egress counters every 2 seconds.
|
||||
You should see the ingress tunnel counter for s1 increasing:
|
||||
```
|
||||
s1 ingressTunnelCounter 100: 2 packets
|
||||
```
|
||||
The other counters should remain at zero.
|
||||
|
||||
4. Press `Ctrl-C` to the second shell to stop `mycontroller.py`
|
||||
|
||||
Each switch is currently mapping traffic into tunnels based on the destination IP
|
||||
address. Your job is to write the rules that forward the traffic between the switches
|
||||
based on the tunnel ID.
|
||||
|
||||
### Potential Issues
|
||||
|
||||
If you see the following error message when running `mycontroller.py`, then
|
||||
the gRPC server is not running on one or more switches.
|
||||
|
||||
```
|
||||
p4@p4:~/tutorials/P4D2_2017_Fall/exercises/p4runtime$ ./mycontroller.py
|
||||
...
|
||||
grpc._channel._Rendezvous: <_Rendezvous of RPC that terminated with (StatusCode.UNAVAILABLE, Connect Failed)>
|
||||
```
|
||||
|
||||
You can check to see which of gRPC ports are listening on the machine by running:
|
||||
```bash
|
||||
sudo netstat -lpnt
|
||||
```
|
||||
|
||||
The easiest solution is to enter `Ctrl-D` or `exit` in the `mininet>` prompt,
|
||||
and re-run `make`.
|
||||
|
||||
### A note about the control plane
|
||||
|
||||
A P4 program defines a packet-processing pipeline, but the rules
|
||||
within each table are inserted by the control plane. In this case,
|
||||
`mycontroller.py` implements our control plane, instead of installing static
|
||||
table entries like we have in the previous exercises.
|
||||
|
||||
**Important:** A P4 program also defines the interface between the
|
||||
switch pipeline and control plane. This interface is defined in the
|
||||
`advanced_tunnel.p4info` file. The table entries that you build in `mycontroller.py`
|
||||
refer to specific tables, keys, and actions by name, and we use a P4Info helper
|
||||
to convert the names into the IDs that are required for P4 Runtime. Any changes
|
||||
in the P4 program that add or rename tables, keys, or actions will need to be
|
||||
reflected in your table entries.
|
||||
|
||||
## Step 2: Implement Tunnel Forwarding
|
||||
|
||||
The `mycontroller.py` file is a basic controller plane that does the following:
|
||||
1. Establishes a gRPC connection to the switches for the P4 Runtime service.
|
||||
2. Pushes the P4 program to each switch.
|
||||
3. Writes tunnel ingress and tunnel egress rules for two tunnels between h1 and h2.
|
||||
4. Reads tunnel ingress and egress counters every 2 seconds.
|
||||
|
||||
It also contains comments marked with `TODO` which indicate the functionality
|
||||
that you need to implement.
|
||||
|
||||
Your job will be to write the tunnel transit rule in the `writeTunnelRules` function
|
||||
that will match on tunnel ID and forward packets to the next hop.
|
||||
|
||||

|
||||
|
||||
In this exercise, you will be interacting with some of the classes and methods in
|
||||
the `p4runtime_lib` directory. Here is a summary of each of the files in the directory:
|
||||
- `helper.py`
|
||||
- Contains the `P4InfoHelper` class which is used to parse the `p4info` files.
|
||||
- Provides translation methods from entity name to and from ID number.
|
||||
- Builds P4 program-dependent sections of P4 Runtime table entries.
|
||||
- `switch.py`
|
||||
- Contains the `SwitchConnection` class which grabs the gRPC client stub, and
|
||||
establishes connections to the switches.
|
||||
- Provides helper methods that construct the P4 Runtime protocol buffer messages
|
||||
and makes the P4 Runtime gRPC service calls.
|
||||
- `bmv2.py`
|
||||
- Contains `Bmv2SwitchConnection` which extends `SwitchConnections` and provides
|
||||
the BMv2-specific device payload to load the P4 program.
|
||||
- `convert.py`
|
||||
- Provides convenience methods to encode and decode from friendly strings and
|
||||
numbers to the byte strings required for the protocol buffer messages.
|
||||
- Used by `helper.py`
|
||||
|
||||
|
||||
## Step 3: Run your solution
|
||||
|
||||
Follow the instructions from Step 1. If your Mininet network is still running,
|
||||
you will just need to run the following in your second shell:
|
||||
```bash
|
||||
./my_controller.py
|
||||
```
|
||||
|
||||
You should start to see ICMP replies in your Mininet prompt, and you should start to
|
||||
see the values for all counters start to increment.
|
||||
|
||||
### Extra Credit and Food for Thought
|
||||
|
||||
You might notice that the rules that are printed by `mycontroller.py` contain the entity
|
||||
IDs rather than the table names. You can use the P4Info helper to translate these IDs
|
||||
into entry names.
|
||||
|
||||
Also, you may want to think about the following:
|
||||
- What assumptions about the topology are baked into your implementation? How would you
|
||||
need to change it for a more realistic network?
|
||||
|
||||
- Why are the byte counters different between the ingress and egress counters?
|
||||
|
||||
- What is the TTL in the ICMP replies? Why is it the value that it is?
|
||||
Hint: The default TTL is 64 for packets sent by the hosts.
|
||||
|
||||
If you are interested, you can find the protocol buffer and gRPC definitions here:
|
||||
- [P4 Runtime](https://github.com/p4lang/PI/blob/master/proto/p4/p4runtime.proto)
|
||||
- [P4 Info](https://github.com/p4lang/PI/blob/master/proto/p4/config/p4info.proto)
|
||||
|
||||
#### Cleaning up Mininet
|
||||
|
||||
If the Mininet shell crashes, it may leave a Mininet instance
|
||||
running in the background. Use the following command to clean up:
|
||||
```bash
|
||||
make clean
|
||||
```
|
||||
|
||||
#### Running the reference solution
|
||||
|
||||
To run the reference solution, you should run the following command from the
|
||||
`~/tutorials/P4D2_2017_Fall/exercises/p4runtime` directory:
|
||||
```bash
|
||||
solution/my_controller.py
|
||||
```
|
||||
|
||||
|
||||
## Next Steps
|
||||
|
||||
Congratulations, your implementation works! Move onto the next assignment
|
||||
[ecn](../ecn)!
|
||||
|
||||
238
exercises/p4runtime/advanced_tunnel.p4
Executable file
238
exercises/p4runtime/advanced_tunnel.p4
Executable file
@@ -0,0 +1,238 @@
|
||||
/* -*- P4_16 -*- */
|
||||
#include <core.p4>
|
||||
#include <v1model.p4>
|
||||
|
||||
const bit<16> TYPE_MYTUNNEL = 0x1212;
|
||||
const bit<16> TYPE_IPV4 = 0x800;
|
||||
const bit<32> MAX_TUNNEL_ID = 1 << 16;
|
||||
|
||||
/*************************************************************************
|
||||
*********************** H E A D E R S ***********************************
|
||||
*************************************************************************/
|
||||
|
||||
typedef bit<9> egressSpec_t;
|
||||
typedef bit<48> macAddr_t;
|
||||
typedef bit<32> ip4Addr_t;
|
||||
|
||||
header ethernet_t {
|
||||
macAddr_t dstAddr;
|
||||
macAddr_t srcAddr;
|
||||
bit<16> etherType;
|
||||
}
|
||||
|
||||
header myTunnel_t {
|
||||
bit<16> proto_id;
|
||||
bit<16> dst_id;
|
||||
}
|
||||
|
||||
header ipv4_t {
|
||||
bit<4> version;
|
||||
bit<4> ihl;
|
||||
bit<8> diffserv;
|
||||
bit<16> totalLen;
|
||||
bit<16> identification;
|
||||
bit<3> flags;
|
||||
bit<13> fragOffset;
|
||||
bit<8> ttl;
|
||||
bit<8> protocol;
|
||||
bit<16> hdrChecksum;
|
||||
ip4Addr_t srcAddr;
|
||||
ip4Addr_t dstAddr;
|
||||
}
|
||||
|
||||
struct metadata {
|
||||
/* empty */
|
||||
}
|
||||
|
||||
struct headers {
|
||||
ethernet_t ethernet;
|
||||
myTunnel_t myTunnel;
|
||||
ipv4_t ipv4;
|
||||
}
|
||||
|
||||
/*************************************************************************
|
||||
*********************** P A R S E R ***********************************
|
||||
*************************************************************************/
|
||||
|
||||
parser MyParser(packet_in packet,
|
||||
out headers hdr,
|
||||
inout metadata meta,
|
||||
inout standard_metadata_t standard_metadata) {
|
||||
|
||||
state start {
|
||||
transition parse_ethernet;
|
||||
}
|
||||
|
||||
state parse_ethernet {
|
||||
packet.extract(hdr.ethernet);
|
||||
transition select(hdr.ethernet.etherType) {
|
||||
TYPE_MYTUNNEL: parse_myTunnel;
|
||||
TYPE_IPV4: parse_ipv4;
|
||||
default: accept;
|
||||
}
|
||||
}
|
||||
|
||||
state parse_myTunnel {
|
||||
packet.extract(hdr.myTunnel);
|
||||
transition select(hdr.myTunnel.proto_id) {
|
||||
TYPE_IPV4: parse_ipv4;
|
||||
default: accept;
|
||||
}
|
||||
}
|
||||
|
||||
state parse_ipv4 {
|
||||
packet.extract(hdr.ipv4);
|
||||
transition accept;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/*************************************************************************
|
||||
************ C H E C K S U M V E R I F I C A T I O N *************
|
||||
*************************************************************************/
|
||||
|
||||
control MyVerifyChecksum(inout headers hdr, inout metadata meta) {
|
||||
apply { }
|
||||
}
|
||||
|
||||
|
||||
/*************************************************************************
|
||||
************** I N G R E S S P R O C E S S I N G *******************
|
||||
*************************************************************************/
|
||||
|
||||
control MyIngress(inout headers hdr,
|
||||
inout metadata meta,
|
||||
inout standard_metadata_t standard_metadata) {
|
||||
|
||||
counter(MAX_TUNNEL_ID, CounterType.packets_and_bytes) ingressTunnelCounter;
|
||||
counter(MAX_TUNNEL_ID, CounterType.packets_and_bytes) egressTunnelCounter;
|
||||
|
||||
action drop() {
|
||||
mark_to_drop();
|
||||
}
|
||||
|
||||
action ipv4_forward(macAddr_t dstAddr, egressSpec_t port) {
|
||||
standard_metadata.egress_spec = port;
|
||||
hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;
|
||||
hdr.ethernet.dstAddr = dstAddr;
|
||||
hdr.ipv4.ttl = hdr.ipv4.ttl - 1;
|
||||
}
|
||||
|
||||
action myTunnel_ingress(bit<16> dst_id) {
|
||||
hdr.myTunnel.setValid();
|
||||
hdr.myTunnel.dst_id = dst_id;
|
||||
hdr.myTunnel.proto_id = hdr.ethernet.etherType;
|
||||
hdr.ethernet.etherType = TYPE_MYTUNNEL;
|
||||
ingressTunnelCounter.count((bit<32>) hdr.myTunnel.dst_id);
|
||||
}
|
||||
|
||||
action myTunnel_forward(egressSpec_t port) {
|
||||
standard_metadata.egress_spec = port;
|
||||
}
|
||||
|
||||
action myTunnel_egress(macAddr_t dstAddr, egressSpec_t port) {
|
||||
standard_metadata.egress_spec = port;
|
||||
hdr.ethernet.dstAddr = dstAddr;
|
||||
hdr.ethernet.etherType = hdr.myTunnel.proto_id;
|
||||
hdr.myTunnel.setInvalid();
|
||||
egressTunnelCounter.count((bit<32>) hdr.myTunnel.dst_id);
|
||||
}
|
||||
|
||||
table ipv4_lpm {
|
||||
key = {
|
||||
hdr.ipv4.dstAddr: lpm;
|
||||
}
|
||||
actions = {
|
||||
ipv4_forward;
|
||||
myTunnel_ingress;
|
||||
drop;
|
||||
NoAction;
|
||||
}
|
||||
size = 1024;
|
||||
default_action = NoAction();
|
||||
}
|
||||
|
||||
table myTunnel_exact {
|
||||
key = {
|
||||
hdr.myTunnel.dst_id: exact;
|
||||
}
|
||||
actions = {
|
||||
myTunnel_forward;
|
||||
myTunnel_egress;
|
||||
drop;
|
||||
}
|
||||
size = 1024;
|
||||
default_action = drop();
|
||||
}
|
||||
|
||||
apply {
|
||||
if (hdr.ipv4.isValid() && !hdr.myTunnel.isValid()) {
|
||||
// Process only non-tunneled IPv4 packets.
|
||||
ipv4_lpm.apply();
|
||||
}
|
||||
|
||||
if (hdr.myTunnel.isValid()) {
|
||||
// Process all tunneled packets.
|
||||
myTunnel_exact.apply();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*************************************************************************
|
||||
**************** E G R E S S P R O C E S S I N G *******************
|
||||
*************************************************************************/
|
||||
|
||||
control MyEgress(inout headers hdr,
|
||||
inout metadata meta,
|
||||
inout standard_metadata_t standard_metadata) {
|
||||
apply { }
|
||||
}
|
||||
|
||||
/*************************************************************************
|
||||
************* C H E C K S U M C O M P U T A T I O N **************
|
||||
*************************************************************************/
|
||||
|
||||
control MyComputeChecksum(inout headers hdr, inout metadata meta) {
|
||||
apply {
|
||||
update_checksum(
|
||||
hdr.ipv4.isValid(),
|
||||
{ hdr.ipv4.version,
|
||||
hdr.ipv4.ihl,
|
||||
hdr.ipv4.diffserv,
|
||||
hdr.ipv4.totalLen,
|
||||
hdr.ipv4.identification,
|
||||
hdr.ipv4.flags,
|
||||
hdr.ipv4.fragOffset,
|
||||
hdr.ipv4.ttl,
|
||||
hdr.ipv4.protocol,
|
||||
hdr.ipv4.srcAddr,
|
||||
hdr.ipv4.dstAddr },
|
||||
hdr.ipv4.hdrChecksum,
|
||||
HashAlgorithm.csum16);
|
||||
}
|
||||
}
|
||||
|
||||
/*************************************************************************
|
||||
*********************** D E P A R S E R *******************************
|
||||
*************************************************************************/
|
||||
|
||||
control MyDeparser(packet_out packet, in headers hdr) {
|
||||
apply {
|
||||
packet.emit(hdr.ethernet);
|
||||
packet.emit(hdr.myTunnel);
|
||||
packet.emit(hdr.ipv4);
|
||||
}
|
||||
}
|
||||
|
||||
/*************************************************************************
|
||||
*********************** S W I T C H *******************************
|
||||
*************************************************************************/
|
||||
|
||||
V1Switch(
|
||||
MyParser(),
|
||||
MyVerifyChecksum(),
|
||||
MyIngress(),
|
||||
MyEgress(),
|
||||
MyComputeChecksum(),
|
||||
MyDeparser()
|
||||
) main;
|
||||
213
exercises/p4runtime/mycontroller.py
Executable file
213
exercises/p4runtime/mycontroller.py
Executable file
@@ -0,0 +1,213 @@
|
||||
#!/usr/bin/env python2
|
||||
import argparse
|
||||
import grpc
|
||||
import os
|
||||
import sys
|
||||
from time import sleep
|
||||
|
||||
# Import P4Runtime lib from parent utils dir
|
||||
# Probably there's a better way of doing this.
|
||||
sys.path.append(
|
||||
os.path.join(os.path.dirname(os.path.abspath(__file__)),
|
||||
'../../utils/'))
|
||||
import p4runtime_lib.bmv2
|
||||
from p4runtime_lib.switch import ShutdownAllSwitchConnections
|
||||
import p4runtime_lib.helper
|
||||
|
||||
SWITCH_TO_HOST_PORT = 1
|
||||
SWITCH_TO_SWITCH_PORT = 2
|
||||
|
||||
|
||||
def writeTunnelRules(p4info_helper, ingress_sw, egress_sw, tunnel_id,
|
||||
dst_eth_addr, dst_ip_addr):
|
||||
"""
|
||||
Installs three rules:
|
||||
1) An tunnel ingress rule on the ingress switch in the ipv4_lpm table that
|
||||
encapsulates traffic into a tunnel with the specified ID
|
||||
2) A transit rule on the ingress switch that forwards traffic based on
|
||||
the specified ID
|
||||
3) An tunnel egress rule on the egress switch that decapsulates traffic
|
||||
with the specified ID and sends it to the host
|
||||
|
||||
:param p4info_helper: the P4Info helper
|
||||
:param ingress_sw: the ingress switch connection
|
||||
:param egress_sw: the egress switch connection
|
||||
:param tunnel_id: the specified tunnel ID
|
||||
:param dst_eth_addr: the destination IP to match in the ingress rule
|
||||
:param dst_ip_addr: the destination Ethernet address to write in the
|
||||
egress rule
|
||||
"""
|
||||
# 1) Tunnel Ingress Rule
|
||||
table_entry = p4info_helper.buildTableEntry(
|
||||
table_name="MyIngress.ipv4_lpm",
|
||||
match_fields={
|
||||
"hdr.ipv4.dstAddr": (dst_ip_addr, 32)
|
||||
},
|
||||
action_name="MyIngress.myTunnel_ingress",
|
||||
action_params={
|
||||
"dst_id": tunnel_id,
|
||||
})
|
||||
ingress_sw.WriteTableEntry(table_entry)
|
||||
print "Installed ingress tunnel rule on %s" % ingress_sw.name
|
||||
|
||||
# 2) Tunnel Transit Rule
|
||||
# The rule will need to be added to the myTunnel_exact table and match on
|
||||
# the tunnel ID (hdr.myTunnel.dst_id). Traffic will need to be forwarded
|
||||
# using the myTunnel_forward action on the port connected to the next switch.
|
||||
#
|
||||
# For our simple topology, switch 1 and switch 2 are connected using a
|
||||
# link attached to port 2 on both switches. We have defined a variable at
|
||||
# the top of the file, SWITCH_TO_SWITCH_PORT, that you can use as the output
|
||||
# port for this action.
|
||||
#
|
||||
# We will only need a transit rule on the ingress switch because we are
|
||||
# using a simple topology. In general, you'll need on transit rule for
|
||||
# each switch in the path (except the last switch, which has the egress rule),
|
||||
# and you will need to select the port dynamically for each switch based on
|
||||
# your topology.
|
||||
|
||||
# TODO build the transit rule
|
||||
# TODO install the transit rule on the ingress switch
|
||||
print "TODO Install transit tunnel rule"
|
||||
|
||||
# 3) Tunnel Egress Rule
|
||||
# For our simple topology, the host will always be located on the
|
||||
# SWITCH_TO_HOST_PORT (port 1).
|
||||
# In general, you will need to keep track of which port the host is
|
||||
# connected to.
|
||||
table_entry = p4info_helper.buildTableEntry(
|
||||
table_name="MyIngress.myTunnel_exact",
|
||||
match_fields={
|
||||
"hdr.myTunnel.dst_id": tunnel_id
|
||||
},
|
||||
action_name="MyIngress.myTunnel_egress",
|
||||
action_params={
|
||||
"dstAddr": dst_eth_addr,
|
||||
"port": SWITCH_TO_HOST_PORT
|
||||
})
|
||||
egress_sw.WriteTableEntry(table_entry)
|
||||
print "Installed egress tunnel rule on %s" % egress_sw.name
|
||||
|
||||
|
||||
def readTableRules(p4info_helper, sw):
|
||||
"""
|
||||
Reads the table entries from all tables on the switch.
|
||||
|
||||
:param p4info_helper: the P4Info helper
|
||||
:param sw: the switch connection
|
||||
"""
|
||||
print '\n----- Reading tables rules for %s -----' % sw.name
|
||||
for response in sw.ReadTableEntries():
|
||||
for entity in response.entities:
|
||||
entry = entity.table_entry
|
||||
# TODO For extra credit, you can use the p4info_helper to translate
|
||||
# the IDs in the entry to names
|
||||
print entry
|
||||
print '-----'
|
||||
|
||||
|
||||
def printCounter(p4info_helper, sw, counter_name, index):
|
||||
"""
|
||||
Reads the specified counter at the specified index from the switch. In our
|
||||
program, the index is the tunnel ID. If the index is 0, it will return all
|
||||
values from the counter.
|
||||
|
||||
:param p4info_helper: the P4Info helper
|
||||
:param sw: the switch connection
|
||||
:param counter_name: the name of the counter from the P4 program
|
||||
:param index: the counter index (in our case, the tunnel ID)
|
||||
"""
|
||||
for response in sw.ReadCounters(p4info_helper.get_counters_id(counter_name), index):
|
||||
for entity in response.entities:
|
||||
counter = entity.counter_entry
|
||||
print "%s %s %d: %d packets (%d bytes)" % (
|
||||
sw.name, counter_name, index,
|
||||
counter.data.packet_count, counter.data.byte_count
|
||||
)
|
||||
|
||||
def printGrpcError(e):
|
||||
print "gRPC Error:", e.details(),
|
||||
status_code = e.code()
|
||||
print "(%s)" % status_code.name,
|
||||
traceback = sys.exc_info()[2]
|
||||
print "[%s:%d]" % (traceback.tb_frame.f_code.co_filename, traceback.tb_lineno)
|
||||
|
||||
def main(p4info_file_path, bmv2_file_path):
|
||||
# Instantiate a P4 Runtime helper from the p4info file
|
||||
p4info_helper = p4runtime_lib.helper.P4InfoHelper(p4info_file_path)
|
||||
|
||||
try:
|
||||
# Create a switch connection object for s1 and s2;
|
||||
# this is backed by a P4 Runtime gRPC connection.
|
||||
# Also, dump all P4Runtime messages sent to switch to given txt files.
|
||||
s1 = p4runtime_lib.bmv2.Bmv2SwitchConnection(
|
||||
name='s1',
|
||||
address='127.0.0.1:50051',
|
||||
device_id=0,
|
||||
proto_dump_file='logs/s1-p4runtime-requests.txt')
|
||||
s2 = p4runtime_lib.bmv2.Bmv2SwitchConnection(
|
||||
name='s2',
|
||||
address='127.0.0.1:50052',
|
||||
device_id=1,
|
||||
proto_dump_file='logs/s2-p4runtime-requests.txt')
|
||||
|
||||
# Send master arbitration update message to establish this controller as
|
||||
# master (required by P4Runtime before performing any other write operation)
|
||||
s1.MasterArbitrationUpdate()
|
||||
s2.MasterArbitrationUpdate()
|
||||
|
||||
# Install the P4 program on the switches
|
||||
s1.SetForwardingPipelineConfig(p4info=p4info_helper.p4info,
|
||||
bmv2_json_file_path=bmv2_file_path)
|
||||
print "Installed P4 Program using SetForwardingPipelineConfig on s1"
|
||||
s2.SetForwardingPipelineConfig(p4info=p4info_helper.p4info,
|
||||
bmv2_json_file_path=bmv2_file_path)
|
||||
print "Installed P4 Program using SetForwardingPipelineConfig on s2"
|
||||
|
||||
# Write the rules that tunnel traffic from h1 to h2
|
||||
writeTunnelRules(p4info_helper, ingress_sw=s1, egress_sw=s2, tunnel_id=100,
|
||||
dst_eth_addr="00:00:00:00:02:02", dst_ip_addr="10.0.2.2")
|
||||
|
||||
# Write the rules that tunnel traffic from h2 to h1
|
||||
writeTunnelRules(p4info_helper, ingress_sw=s2, egress_sw=s1, tunnel_id=200,
|
||||
dst_eth_addr="00:00:00:00:01:01", dst_ip_addr="10.0.1.1")
|
||||
|
||||
# TODO Uncomment the following two lines to read table entries from s1 and s2
|
||||
# readTableRules(p4info_helper, s1)
|
||||
# readTableRules(p4info_helper, s2)
|
||||
|
||||
# Print the tunnel counters every 2 seconds
|
||||
while True:
|
||||
sleep(2)
|
||||
print '\n----- Reading tunnel counters -----'
|
||||
printCounter(p4info_helper, s1, "MyIngress.ingressTunnelCounter", 100)
|
||||
printCounter(p4info_helper, s2, "MyIngress.egressTunnelCounter", 100)
|
||||
printCounter(p4info_helper, s2, "MyIngress.ingressTunnelCounter", 200)
|
||||
printCounter(p4info_helper, s1, "MyIngress.egressTunnelCounter", 200)
|
||||
|
||||
except KeyboardInterrupt:
|
||||
print " Shutting down."
|
||||
except grpc.RpcError as e:
|
||||
printGrpcError(e)
|
||||
|
||||
ShutdownAllSwitchConnections()
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='P4Runtime Controller')
|
||||
parser.add_argument('--p4info', help='p4info proto in text format from p4c',
|
||||
type=str, action="store", required=False,
|
||||
default='./build/advanced_tunnel.p4info')
|
||||
parser.add_argument('--bmv2-json', help='BMv2 JSON file from p4c',
|
||||
type=str, action="store", required=False,
|
||||
default='./build/advanced_tunnel.json')
|
||||
args = parser.parse_args()
|
||||
|
||||
if not os.path.exists(args.p4info):
|
||||
parser.print_help()
|
||||
print "\np4info file not found: %s\nHave you run 'make'?" % args.p4info
|
||||
parser.exit(1)
|
||||
if not os.path.exists(args.bmv2_json):
|
||||
parser.print_help()
|
||||
print "\nBMv2 JSON file not found: %s\nHave you run 'make'?" % args.bmv2_json
|
||||
parser.exit(1)
|
||||
main(args.p4info, args.bmv2_json)
|
||||
222
exercises/p4runtime/solution/mycontroller.py
Executable file
222
exercises/p4runtime/solution/mycontroller.py
Executable file
@@ -0,0 +1,222 @@
|
||||
#!/usr/bin/env python2
|
||||
import argparse
|
||||
import os
|
||||
import sys
|
||||
from time import sleep
|
||||
|
||||
# Import P4Runtime lib from parent utils dir
|
||||
# Probably there's a better way of doing this.
|
||||
sys.path.append(
|
||||
os.path.join(os.path.dirname(os.path.abspath(__file__)),
|
||||
'../../utils/'))
|
||||
import p4runtime_lib.bmv2
|
||||
import p4runtime_lib.helper
|
||||
|
||||
SWITCH_TO_HOST_PORT = 1
|
||||
SWITCH_TO_SWITCH_PORT = 2
|
||||
|
||||
|
||||
def writeTunnelRules(p4info_helper, ingress_sw, egress_sw, tunnel_id,
|
||||
dst_eth_addr, dst_ip_addr):
|
||||
"""
|
||||
Installs three rules:
|
||||
1) An tunnel ingress rule on the ingress switch in the ipv4_lpm table that
|
||||
encapsulates traffic into a tunnel with the specified ID
|
||||
2) A transit rule on the ingress switch that forwards traffic based on
|
||||
the specified ID
|
||||
3) An tunnel egress rule on the egress switch that decapsulates traffic
|
||||
with the specified ID and sends it to the host
|
||||
|
||||
:param p4info_helper: the P4Info helper
|
||||
:param ingress_sw: the ingress switch connection
|
||||
:param egress_sw: the egress switch connection
|
||||
:param tunnel_id: the specified tunnel ID
|
||||
:param dst_eth_addr: the destination IP to match in the ingress rule
|
||||
:param dst_ip_addr: the destination Ethernet address to write in the
|
||||
egress rule
|
||||
"""
|
||||
# 1) Tunnel Ingress Rule
|
||||
table_entry = p4info_helper.buildTableEntry(
|
||||
table_name="MyIngress.ipv4_lpm",
|
||||
match_fields={
|
||||
"hdr.ipv4.dstAddr": (dst_ip_addr, 32)
|
||||
},
|
||||
action_name="MyIngress.myTunnel_ingress",
|
||||
action_params={
|
||||
"dst_id": tunnel_id,
|
||||
})
|
||||
ingress_sw.WriteTableEntry(table_entry)
|
||||
print "Installed ingress tunnel rule on %s" % ingress_sw.name
|
||||
|
||||
# 2) Tunnel Transit Rule
|
||||
# The rule will need to be added to the myTunnel_exact table and match on
|
||||
# the tunnel ID (hdr.myTunnel.dst_id). Traffic will need to be forwarded
|
||||
# using the myTunnel_forward action on the port connected to the next switch.
|
||||
#
|
||||
# For our simple topology, switch 1 and switch 2 are connected using a
|
||||
# link attached to port 2 on both switches. We have defined a variable at
|
||||
# the top of the file, SWITCH_TO_SWITCH_PORT, that you can use as the output
|
||||
# port for this action.
|
||||
#
|
||||
# We will only need a transit rule on the ingress switch because we are
|
||||
# using a simple topology. In general, you'll need on transit rule for
|
||||
# each switch in the path (except the last switch, which has the egress rule),
|
||||
# and you will need to select the port dynamically for each switch based on
|
||||
# your topology.
|
||||
|
||||
# TODO build the transit rule
|
||||
# TODO install the transit rule on the ingress switch
|
||||
table_entry = p4info_helper.buildTableEntry(
|
||||
table_name="MyIngress.myTunnel_exact",
|
||||
match_fields={
|
||||
"hdr.myTunnel.dst_id": tunnel_id
|
||||
},
|
||||
action_name="MyIngress.myTunnel_forward",
|
||||
action_params={
|
||||
"port": SWITCH_TO_SWITCH_PORT
|
||||
})
|
||||
ingress_sw.WriteTableEntry(table_entry)
|
||||
print "Installed transit tunnel rule on %s" % ingress_sw.name
|
||||
|
||||
# 3) Tunnel Egress Rule
|
||||
# For our simple topology, the host will always be located on the
|
||||
# SWITCH_TO_HOST_PORT (port 1).
|
||||
# In general, you will need to keep track of which port the host is
|
||||
# connected to.
|
||||
table_entry = p4info_helper.buildTableEntry(
|
||||
table_name="MyIngress.myTunnel_exact",
|
||||
match_fields={
|
||||
"hdr.myTunnel.dst_id": tunnel_id
|
||||
},
|
||||
action_name="MyIngress.myTunnel_egress",
|
||||
action_params={
|
||||
"dstAddr": dst_eth_addr,
|
||||
"port": SWITCH_TO_HOST_PORT
|
||||
})
|
||||
egress_sw.WriteTableEntry(table_entry)
|
||||
print "Installed egress tunnel rule on %s" % egress_sw.name
|
||||
|
||||
|
||||
def readTableRules(p4info_helper, sw):
|
||||
"""
|
||||
Reads the table entries from all tables on the switch.
|
||||
|
||||
:param p4info_helper: the P4Info helper
|
||||
:param sw: the switch connection
|
||||
"""
|
||||
print '\n----- Reading tables rules for %s -----' % sw.name
|
||||
for response in sw.ReadTableEntries():
|
||||
for entity in response.entities:
|
||||
entry = entity.table_entry
|
||||
# TODO For extra credit, you can use the p4info_helper to translate
|
||||
# the IDs the entry to names
|
||||
table_name = p4info_helper.get_tables_name(entry.table_id)
|
||||
print '%s: ' % table_name,
|
||||
for m in entry.match:
|
||||
print p4info_helper.get_match_field_name(table_name, m.field_id),
|
||||
print '%r' % (p4info_helper.get_match_field_value(m),),
|
||||
action = entry.action.action
|
||||
action_name = p4info_helper.get_actions_name(action.action_id)
|
||||
print '->', action_name,
|
||||
for p in action.params:
|
||||
print p4info_helper.get_action_param_name(action_name, p.param_id),
|
||||
print '%r' % p.value,
|
||||
print
|
||||
|
||||
|
||||
def printCounter(p4info_helper, sw, counter_name, index):
|
||||
"""
|
||||
Reads the specified counter at the specified index from the switch. In our
|
||||
program, the index is the tunnel ID. If the index is 0, it will return all
|
||||
values from the counter.
|
||||
|
||||
:param p4info_helper: the P4Info helper
|
||||
:param sw: the switch connection
|
||||
:param counter_name: the name of the counter from the P4 program
|
||||
:param index: the counter index (in our case, the tunnel ID)
|
||||
"""
|
||||
for response in sw.ReadCounters(p4info_helper.get_counters_id(counter_name), index):
|
||||
for entity in response.entities:
|
||||
counter = entity.counter_entry
|
||||
print "%s %s %d: %d packets (%d bytes)" % (
|
||||
sw.name, counter_name, index,
|
||||
counter.data.packet_count, counter.data.byte_count
|
||||
)
|
||||
|
||||
|
||||
def main(p4info_file_path, bmv2_file_path):
|
||||
# Instantiate a P4 Runtime helper from the p4info file
|
||||
p4info_helper = p4runtime_lib.helper.P4InfoHelper(p4info_file_path)
|
||||
|
||||
# Create a switch connection object for s1 and s2;
|
||||
# this is backed by a P4 Runtime gRPC connection.
|
||||
# Also, dump all P4Runtime messages sent to switch to given txt files.
|
||||
s1 = p4runtime_lib.bmv2.Bmv2SwitchConnection(
|
||||
name='s1',
|
||||
address='127.0.0.1:50051',
|
||||
device_id=0,
|
||||
proto_dump_file='logs/s1-p4runtime-requests.txt')
|
||||
s2 = p4runtime_lib.bmv2.Bmv2SwitchConnection(
|
||||
name='s2',
|
||||
address='127.0.0.1:50052',
|
||||
device_id=1,
|
||||
proto_dump_file='logs/s2-p4runtime-requests.txt')
|
||||
|
||||
# Send master arbitration update message to establish this controller as
|
||||
# master (required by P4Runtime before performing any other write operation)
|
||||
s1.MasterArbitrationUpdate()
|
||||
s2.MasterArbitrationUpdate()
|
||||
|
||||
# Install the P4 program on the switches
|
||||
s1.SetForwardingPipelineConfig(p4info=p4info_helper.p4info,
|
||||
bmv2_json_file_path=bmv2_file_path)
|
||||
print "Installed P4 Program using SetForwardingPipelineConfig on s1"
|
||||
s2.SetForwardingPipelineConfig(p4info=p4info_helper.p4info,
|
||||
bmv2_json_file_path=bmv2_file_path)
|
||||
print "Installed P4 Program using SetForwardingPipelineConfig on s2"
|
||||
|
||||
# Write the rules that tunnel traffic from h1 to h2
|
||||
writeTunnelRules(p4info_helper, ingress_sw=s1, egress_sw=s2, tunnel_id=100,
|
||||
dst_eth_addr="00:00:00:00:02:02", dst_ip_addr="10.0.2.2")
|
||||
|
||||
# Write the rules that tunnel traffic from h2 to h1
|
||||
writeTunnelRules(p4info_helper, ingress_sw=s2, egress_sw=s1, tunnel_id=200,
|
||||
dst_eth_addr="00:00:00:00:01:01", dst_ip_addr="10.0.1.1")
|
||||
|
||||
# TODO Uncomment the following two lines to read table entries from s1 and s2
|
||||
readTableRules(p4info_helper, s1)
|
||||
readTableRules(p4info_helper, s2)
|
||||
|
||||
# Print the tunnel counters every 2 seconds
|
||||
try:
|
||||
while True:
|
||||
sleep(2)
|
||||
print '\n----- Reading tunnel counters -----'
|
||||
printCounter(p4info_helper, s1, "MyIngress.ingressTunnelCounter", 100)
|
||||
printCounter(p4info_helper, s2, "MyIngress.egressTunnelCounter", 100)
|
||||
printCounter(p4info_helper, s2, "MyIngress.ingressTunnelCounter", 200)
|
||||
printCounter(p4info_helper, s1, "MyIngress.egressTunnelCounter", 200)
|
||||
except KeyboardInterrupt:
|
||||
print " Shutting down."
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='P4Runtime Controller')
|
||||
parser.add_argument('--p4info', help='p4info proto in text format from p4c',
|
||||
type=str, action="store", required=False,
|
||||
default='./build/advanced_tunnel.p4info')
|
||||
parser.add_argument('--bmv2-json', help='BMv2 JSON file from p4c',
|
||||
type=str, action="store", required=False,
|
||||
default='./build/advanced_tunnel.json')
|
||||
args = parser.parse_args()
|
||||
|
||||
if not os.path.exists(args.p4info):
|
||||
parser.print_help()
|
||||
print "\np4info file not found: %s\nHave you run 'make'?" % args.p4info
|
||||
parser.exit(1)
|
||||
if not os.path.exists(args.bmv2_json):
|
||||
parser.print_help()
|
||||
print "\nBMv2 JSON file not found: %s\nHave you run 'make'?" % args.bmv2_json
|
||||
parser.exit(1)
|
||||
|
||||
main(args.p4info, args.bmv2_json)
|
||||
16
exercises/p4runtime/topology.json
Executable file
16
exercises/p4runtime/topology.json
Executable file
@@ -0,0 +1,16 @@
|
||||
{
|
||||
"hosts": [
|
||||
"h1",
|
||||
"h2",
|
||||
"h3"
|
||||
],
|
||||
"switches": {
|
||||
"s1": {},
|
||||
"s2": {},
|
||||
"s3": {}
|
||||
},
|
||||
"links": [
|
||||
["h1", "s1"], ["s1", "s2"], ["s1", "s3"],
|
||||
["s3", "s2"], ["s2", "h2"], ["s3", "h3"]
|
||||
]
|
||||
}
|
||||
Reference in New Issue
Block a user