Sigcomm 17 (#52)

This problem contains the tutorial exercises and solutions presented at SIGCOMM '17.
This commit is contained in:
Nate Foster
2017-10-03 16:30:47 -04:00
committed by GitHub
parent 119f267938
commit ef64a2cfd8
90 changed files with 8009 additions and 1 deletions

View File

@@ -0,0 +1,143 @@
# Load Balancing
In this exercise, you will implement a form of load balancing based on
a single version of Equal-Cost Multipath Forwarding. The switch you
will implement will use two tables to forward packets to one of two
destination hosts at random. The first table will use a hash function
(applied to a 5-tuple consisting of the source and destination
Ethernet addresses, source and destination IP addresses, and IP
protocol) to select one of two hosts. The second table will use the
computed hash value to forward the packet to the selected host.
> **Spoiler alert:** There is a reference solution in the `solution`
> sub-directory. Feel free to compare your implementation to the
> reference.
## Step 1: Run the (incomplete) starter code
The directory with this README also contains a skeleton P4 program,
`load_balance.p4`, which initially drops all packets. Your job (in
the next step) will be to extend it to properly forward packets.
Before that, let's compile the incomplete `load_balance.p4` and bring
up a switch in Mininet to test its behavior.
1. In your shell, run:
```bash
./run.sh
```
This will:
* compile `load_balance.p4`, and
* start a Mininet instance with three switches (`s1`, `s2`, `s3`) configured
in a triangle, each connected to one host (`h1`, `h2`, `h3`).
* The hosts are assigned IPs of `10.0.1.1`, `10.0.2.2`, etc.
* We use the IP address 10.0.0.1 to indicate traffic that should be
load balanced between `h2` and `h3`.
2. You should now see a Mininet command prompt. Open three terminals
for `h1`, `h2` and `h3`, respectively:
```bash
mininet> xterm h1 h2 h3
```
3. Each host includes a small Python-based messaging client and
server. In `h2` and `h3`'s XTerms, start the servers:
```bash
./receive.py
```
4. In `h1`'s XTerm, send a message from the client:
```bash
./send.py 10.0.0.1 "P4 is cool"
```
The message will not be received.
5. Type `exit` to leave each XTerm and the Mininet command line.
The message was not received because each switch is programmed with
`load_balance.p4`, which drops all packets on arrival. Your job is to
extend this file.
### A note about the control plane
P4 programs define a packet-processing pipeline, but the rules
governing packet processing are inserted into the pipeline by the
control plane. When a rule matches a packet, its action is invoked
with parameters supplied by the control plane as part of the rule.
In this exercise, the control plane logic has already been
implemented. As part of bringing up the Mininet instance, the
`run.sh` script will install packet-processing rules in the tables of
each switch. These are defined in the `s1-commands.txt` file.
**Important:** A P4 program also defines the interface between the
switch pipeline and control plane. The `s1-commands.txt` file contains
a list of commands for the BMv2 switch API. These commands refer to
specific tables, keys, and actions by name, and any changes in the P4
program that add or rename tables, keys, or actions will need to be
reflected in these command files.
## Step 2: Implement Load Balancing
The `load_balance.p4` file contains a skeleton P4 program with key
pieces of logic replaced by `TODO` comments. These should guide your
implementation---replace each `TODO` with logic implementing the
missing piece.
A complete `load_balance.p4` will contain the following components:
1. Header type definitions for Ethernet (`ethernet_t`) and IPv4 (`ipv4_t`).
2. Parsers for Ethernet and IPv4 that populate `ethernet_t` and `ipv4_t` fields.
3. An action to drop a packet, using `mark_to_drop()`.
4. **TODO:** An action (called `set_ecmp_select`), which will:
1. Hashes the 5-tuple specified above using the `hash` extern
2. Stores the result in the `meta.ecmp_select` field
5. **TODO:** A control that:
1. Applies the `ecmp_group` table.
2. Applies the `ecmp_nhop` table.
6. A deparser that selects the order in which fields inserted into the outgoing
packet.
7. A `package` instantiation supplied with the parser, control, and deparser.
> In general, a package also requires instances of checksum verification
> and recomputation controls. These are not necessary for this tutorial
> and are replaced with instantiations of empty controls.
## Step 3: Run your solution
Follow the instructions from Step 1. This time, your message from
`h1` should be delivered to `h2` or `h3`. If you send several
messages, some should be received by each server.
### Food for thought
### Troubleshooting
There are several ways that problems might manifest:
1. `load_balance.p4` fails to compile. In this case, `run.sh` will
report the error emitted from the compiler and stop.
2. `load_balance.p4` compiles but does not support the control plane
rules in the `sX-commands.txt` files that `run.sh` tries to install
using the BMv2 CLI. In this case, `run.sh` will report these errors
to `stderr`. Use these error messages to fix your `load_balance.p4`
implementation.
3. `load_balance.p4` compiles, and the control plane rules are
installed, but the switch does not process packets in the desired way.
The `build/logs/<switch-name>.log` files contain trace messages
describing how each switch processes each packet. The output is
detailed and can help pinpoint logic errors in your implementation.
#### Cleaning up Mininet
In the latter two cases above, `run.sh` may leave a Mininet instance
running in the background. Use the following command to clean up
these instances:
```bash
mn -c
```
## Next Steps
Congratulations, your implementation works! Move on to the next
exercise: [HULA](../hula).

View File

@@ -0,0 +1,218 @@
/* -*- P4_16 -*- */
#include <core.p4>
#include <v1model.p4>
/*************************************************************************
*********************** H E A D E R S ***********************************
*************************************************************************/
header ethernet_t {
bit<48> dstAddr;
bit<48> srcAddr;
bit<16> etherType;
}
header ipv4_t {
bit<4> version;
bit<4> ihl;
bit<8> diffserv;
bit<16> totalLen;
bit<16> identification;
bit<3> flags;
bit<13> fragOffset;
bit<8> ttl;
bit<8> protocol;
bit<16> hdrChecksum;
bit<32> srcAddr;
bit<32> dstAddr;
}
header tcp_t {
bit<16> srcPort;
bit<16> dstPort;
bit<32> seqNo;
bit<32> ackNo;
bit<4> dataOffset;
bit<3> res;
bit<3> ecn;
bit<6> ctrl;
bit<16> window;
bit<16> checksum;
bit<16> urgentPtr;
}
struct metadata {
bit<14> ecmp_select;
}
struct headers {
ethernet_t ethernet;
ipv4_t ipv4;
tcp_t tcp;
}
/*************************************************************************
*********************** P A R S E R ***********************************
*************************************************************************/
parser MyParser(packet_in packet,
out headers hdr,
inout metadata meta,
inout standard_metadata_t standard_metadata) {
state start {
transition parse_ethernet;
}
state parse_ethernet {
packet.extract(hdr.ethernet);
transition select(hdr.ethernet.etherType) {
0x800: parse_ipv4;
default: accept;
}
}
state parse_ipv4 {
packet.extract(hdr.ipv4);
transition select(hdr.ipv4.protocol) {
6: parse_tcp;
default: accept;
}
}
state parse_tcp {
packet.extract(hdr.tcp);
transition accept;
}
}
/*************************************************************************
************ C H E C K S U M V E R I F I C A T I O N *************
*************************************************************************/
control MyVerifyChecksum(in headers hdr, inout metadata meta) {
apply { }
}
/*************************************************************************
************** I N G R E S S P R O C E S S I N G *******************
*************************************************************************/
control MyIngress(inout headers hdr,
inout metadata meta,
inout standard_metadata_t standard_metadata) {
action drop() {
mark_to_drop();
}
action set_ecmp_select(bit<16> ecmp_base, bit<32> ecmp_count) {
/* TODO: hash on 5-tuple and save the hash result in meta.ecmp_select
so that the ecmp_nhop table can use it to make a forwarding decision accordingly */
}
action set_nhop(bit<48> nhop_dmac, bit<32> nhop_ipv4, bit<9> port) {
hdr.ethernet.dstAddr = nhop_dmac;
hdr.ipv4.dstAddr = nhop_ipv4;
standard_metadata.egress_spec = port;
hdr.ipv4.ttl = hdr.ipv4.ttl - 1;
}
table ecmp_group {
key = {
hdr.ipv4.dstAddr: lpm;
}
actions = {
drop;
set_ecmp_select;
}
size = 1024;
}
table ecmp_nhop {
key = {
meta.ecmp_select: exact;
}
actions = {
drop;
set_nhop;
}
size = 2;
}
apply {
if (hdr.ipv4.isValid() && hdr.ipv4.ttl > 0) {
ecmp_group.apply();
ecmp_nhop.apply();
}
}
}
/*************************************************************************
**************** E G R E S S P R O C E S S I N G *******************
*************************************************************************/
control MyEgress(inout headers hdr,
inout metadata meta,
inout standard_metadata_t standard_metadata) {
action rewrite_mac(bit<48> smac) {
hdr.ethernet.srcAddr = smac;
}
action drop() {
mark_to_drop();
}
table send_frame {
key = {
standard_metadata.egress_port: exact;
}
actions = {
rewrite_mac;
drop;
}
size = 256;
}
apply {
send_frame.apply();
}
}
/*************************************************************************
************* C H E C K S U M C O M P U T A T I O N **************
*************************************************************************/
control MyComputeChecksum(inout headers hdr, inout metadata meta) {
apply {
update_checksum(
hdr.ipv4.isValid(),
{ hdr.ipv4.version,
hdr.ipv4.ihl,
hdr.ipv4.diffserv,
hdr.ipv4.totalLen,
hdr.ipv4.identification,
hdr.ipv4.flags,
hdr.ipv4.fragOffset,
hdr.ipv4.ttl,
hdr.ipv4.protocol,
hdr.ipv4.srcAddr,
hdr.ipv4.dstAddr },
hdr.ipv4.hdrChecksum,
HashAlgorithm.csum16);
}
}
/*************************************************************************
*********************** D E P A R S E R *******************************
*************************************************************************/
control MyDeparser(packet_out packet, in headers hdr) {
apply {
packet.emit(hdr.ethernet);
packet.emit(hdr.ipv4);
packet.emit(hdr.tcp);
}
}
/*************************************************************************
*********************** S W I T C H *******************************
*************************************************************************/
V1Switch(
MyParser(),
MyVerifyChecksum(),
MyIngress(),
MyEgress(),
MyComputeChecksum(),
MyDeparser()
) main;

View File

@@ -0,0 +1,32 @@
{
"program": "load_balance.p4",
"language": "p4-16",
"targets": {
"multiswitch": {
"auto-control-plane": true,
"cli": true,
"pcap_dump": true,
"bmv2_log": true,
"links": [["h1", "s1"], ["s1", "s2"], ["s1", "s3"], ["s3", "s2"], ["s2", "h2"], ["s3", "h3"]],
"hosts": {
"h1": {
},
"h2": {
},
"h3": {
}
},
"switches": {
"s1": {
"entries": "s1-commands.txt"
},
"s2": {
"entries": "s2-commands.txt"
},
"s3": {
"entries": "s3-commands.txt"
}
}
}
}
}

View File

@@ -0,0 +1,52 @@
#!/usr/bin/env python
import sys
import struct
import os
from scapy.all import sniff, sendp, hexdump, get_if_list, get_if_hwaddr
from scapy.all import Packet, IPOption
from scapy.all import ShortField, IntField, LongField, BitField, FieldListField, FieldLenField
from scapy.all import IP, UDP, Raw
from scapy.layers.inet import _IPOption_HDR
def get_if():
ifs=get_if_list()
iface=None
for i in get_if_list():
if "eth0" in i:
iface=i
break;
if not iface:
print "Cannot find eth0 interface"
exit(1)
return iface
class IPOption_MRI(IPOption):
name = "MRI"
option = 31
fields_desc = [ _IPOption_HDR,
FieldLenField("length", None, fmt="B",
length_of="swids",
adjust=lambda pkt,l:l+4),
ShortField("count", 0),
FieldListField("swids",
[],
IntField("", 0),
length_from=lambda pkt:pkt.count*4) ]
def handle_pkt(pkt):
print "got a packet"
pkt.show2()
# hexdump(pkt)
sys.stdout.flush()
def main():
ifaces = filter(lambda i: 'eth' in i, os.listdir('/sys/class/net/'))
iface = ifaces[0]
print "sniffing on %s" % iface
sys.stdout.flush()
sniff(filter="tcp", iface = iface,
prn = lambda x: handle_pkt(x))
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,4 @@
P4APPRUNNER=../../utils/p4apprunner.py
mkdir -p build
tar -czf build/p4app.tgz * --exclude='build'
sudo python $P4APPRUNNER p4app.tgz --build-dir ./build

View File

@@ -0,0 +1,6 @@
table_set_default ecmp_group drop
table_add ecmp_group set_ecmp_select 10.0.0.1/32 => 0 2
table_add ecmp_nhop set_nhop 0 => 00:00:00:00:01:02 10.0.2.2 2
table_add ecmp_nhop set_nhop 1 => 00:00:00:00:01:03 10.0.3.3 3
table_add send_frame rewrite_mac 2 => 00:00:00:01:02:00
table_add send_frame rewrite_mac 3 => 00:00:00:01:03:00

View File

@@ -0,0 +1,4 @@
table_set_default ecmp_group drop
table_add ecmp_group set_ecmp_select 10.0.2.2/32 => 0 1
table_add ecmp_nhop set_nhop 0 => 00:00:00:00:02:02 10.0.2.2 1
table_add send_frame rewrite_mac 1 => 00:00:00:02:01:00

View File

@@ -0,0 +1,4 @@
table_set_default ecmp_group drop
table_add ecmp_group set_ecmp_select 10.0.3.3/32 => 0 1
table_add ecmp_nhop set_nhop 0 => 00:00:00:00:03:03 10.0.3.3 1
table_add send_frame rewrite_mac 1 => 00:00:00:03:01:00

View File

@@ -0,0 +1,41 @@
#!/usr/bin/env python
import argparse
import sys
import socket
import random
import struct
from scapy.all import sendp, send, get_if_list, get_if_hwaddr
from scapy.all import Packet
from scapy.all import Ether, IP, UDP, TCP
def get_if():
ifs=get_if_list()
iface=None # "h1-eth0"
for i in get_if_list():
if "eth0" in i:
iface=i
break;
if not iface:
print "Cannot find eth0 interface"
exit(1)
return iface
def main():
if len(sys.argv)<3:
print 'pass 2 arguments: <destination> "<message>"'
exit(1)
addr = socket.gethostbyname(sys.argv[1])
iface = get_if()
print "sending on interface %s to %s" % (iface, str(addr))
pkt = Ether(src=get_if_hwaddr(iface), dst='ff:ff:ff:ff:ff:ff')
pkt = pkt /IP(dst=addr) / TCP(dport=1234, sport=random.randint(49152,65535)) / sys.argv[2]
pkt.show2()
sendp(pkt, iface=iface, verbose=False)
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,225 @@
/* -*- P4_16 -*- */
#include <core.p4>
#include <v1model.p4>
/*************************************************************************
*********************** H E A D E R S ***********************************
*************************************************************************/
header ethernet_t {
bit<48> dstAddr;
bit<48> srcAddr;
bit<16> etherType;
}
header ipv4_t {
bit<4> version;
bit<4> ihl;
bit<8> diffserv;
bit<16> totalLen;
bit<16> identification;
bit<3> flags;
bit<13> fragOffset;
bit<8> ttl;
bit<8> protocol;
bit<16> hdrChecksum;
bit<32> srcAddr;
bit<32> dstAddr;
}
header tcp_t {
bit<16> srcPort;
bit<16> dstPort;
bit<32> seqNo;
bit<32> ackNo;
bit<4> dataOffset;
bit<3> res;
bit<3> ecn;
bit<6> ctrl;
bit<16> window;
bit<16> checksum;
bit<16> urgentPtr;
}
struct metadata {
bit<14> ecmp_select;
}
struct headers {
ethernet_t ethernet;
ipv4_t ipv4;
tcp_t tcp;
}
/*************************************************************************
*********************** P A R S E R ***********************************
*************************************************************************/
parser MyParser(packet_in packet,
out headers hdr,
inout metadata meta,
inout standard_metadata_t standard_metadata) {
state start {
transition parse_ethernet;
}
state parse_ethernet {
packet.extract(hdr.ethernet);
transition select(hdr.ethernet.etherType) {
0x800: parse_ipv4;
default: accept;
}
}
state parse_ipv4 {
packet.extract(hdr.ipv4);
transition select(hdr.ipv4.protocol) {
6: parse_tcp;
default: accept;
}
}
state parse_tcp {
packet.extract(hdr.tcp);
transition accept;
}
}
/*************************************************************************
************ C H E C K S U M V E R I F I C A T I O N *************
*************************************************************************/
control MyVerifyChecksum(in headers hdr, inout metadata meta) {
apply { }
}
/*************************************************************************
************** I N G R E S S P R O C E S S I N G *******************
*************************************************************************/
control MyIngress(inout headers hdr,
inout metadata meta,
inout standard_metadata_t standard_metadata) {
action drop() {
mark_to_drop();
}
action set_ecmp_select(bit<16> ecmp_base, bit<32> ecmp_count) {
hash(meta.ecmp_select,
HashAlgorithm.crc16,
ecmp_base,
{ hdr.ipv4.srcAddr,
hdr.ipv4.dstAddr,
hdr.ipv4.protocol,
hdr.tcp.srcPort,
hdr.tcp.dstPort },
ecmp_count);
}
action set_nhop(bit<48> nhop_dmac, bit<32> nhop_ipv4, bit<9> port) {
hdr.ethernet.dstAddr = nhop_dmac;
hdr.ipv4.dstAddr = nhop_ipv4;
standard_metadata.egress_spec = port;
hdr.ipv4.ttl = hdr.ipv4.ttl - 1;
}
table ecmp_group {
key = {
hdr.ipv4.dstAddr: lpm;
}
actions = {
drop;
set_ecmp_select;
}
size = 1024;
}
table ecmp_nhop {
key = {
meta.ecmp_select: exact;
}
actions = {
drop;
set_nhop;
}
size = 2;
}
apply {
if (hdr.ipv4.isValid() && hdr.ipv4.ttl > 0) {
ecmp_group.apply();
ecmp_nhop.apply();
}
}
}
/*************************************************************************
**************** E G R E S S P R O C E S S I N G *******************
*************************************************************************/
control MyEgress(inout headers hdr,
inout metadata meta,
inout standard_metadata_t standard_metadata) {
action rewrite_mac(bit<48> smac) {
hdr.ethernet.srcAddr = smac;
}
action drop() {
mark_to_drop();
}
table send_frame {
key = {
standard_metadata.egress_port: exact;
}
actions = {
rewrite_mac;
drop;
}
size = 256;
}
apply {
send_frame.apply();
}
}
/*************************************************************************
************* C H E C K S U M C O M P U T A T I O N **************
*************************************************************************/
control MyComputeChecksum(inout headers hdr, inout metadata meta) {
apply {
update_checksum(
hdr.ipv4.isValid(),
{ hdr.ipv4.version,
hdr.ipv4.ihl,
hdr.ipv4.diffserv,
hdr.ipv4.totalLen,
hdr.ipv4.identification,
hdr.ipv4.flags,
hdr.ipv4.fragOffset,
hdr.ipv4.ttl,
hdr.ipv4.protocol,
hdr.ipv4.srcAddr,
hdr.ipv4.dstAddr },
hdr.ipv4.hdrChecksum,
HashAlgorithm.csum16);
}
}
/*************************************************************************
*********************** D E P A R S E R *******************************
*************************************************************************/
control MyDeparser(packet_out packet, in headers hdr) {
apply {
packet.emit(hdr.ethernet);
packet.emit(hdr.ipv4);
packet.emit(hdr.tcp);
}
}
/*************************************************************************
*********************** S W I T C H *******************************
*************************************************************************/
V1Switch(
MyParser(),
MyVerifyChecksum(),
MyIngress(),
MyEgress(),
MyComputeChecksum(),
MyDeparser()
) main;